Remedial Action Contract for Remedial Response, Enforcement Oversight, and Non-Time Critical Removal Activities at Sites of Release or Threatened Release of Hazardous Substances in EPA Region VIII U.S. EPA Contract No. EP-W-05-049 # Sampling and Analysis Plan/Quality Assurance Project Plan: Opportunistic Commercial Logging Sampling – Upper Flower Creek Timber Unit 16 Revision 0 - November 2012 Work Assignment No.: 329-RICO-08BC Libby Asbestos Superfund Project, **OU4 Remedial Investigation/** **Feasibility Study** EPA Work Assignment Manager: Victor Ketellapper CDM Smith Project Manager: Nathan Smith Prepared for: U.S. Environmental Protection Agency Region VIII 1595 Wynkoop Street Denver, Colorado 80202 Prepared by: CDM Federal Programs Corporation 555 17th Street, Suite 1100 Denver, Colorado 80202 # A1. TITLE AND APPROVAL SHEET Sampling and Analysis Plan/Quality Assurance Project Plan: Opportunistic Commercial Logging Sampling - Upper Flower Creek Timber Unit 16 | | 0 | 11/1/12 | | | | |----|--------------------------|-------------------------|--|---------|--| 1 | | Ar | proved by: | Jan da | ~ | Date: | 11/1/12 | | | | athan Smith | | | | | | | DM,Smith, Project | ct Manager | | | | | _ | 1 | 10 | | 11.1.0 | | Αŗ | proved by: | sery Crow | <u>uc</u> | Date: _ | 11/1/12 | | | | erry C <i>fo</i> well | - | | | | | C | DM Smith, Quali | ity Assurance Coordinator | | | | Λp | proved by:_ | Dania? | Times, on behalf of | Date: _ | 11/1/12 | | | | lizabeth Fagen, 🗗 | | | ι (| | | E | PA, Region VIII | Remedial Project Manager | | | | Αŗ | proved by: | AAM | | Date: _ | 11/1/12 | | | | ictor Ketellapper | | | ************************************** | | | | | Libby Asbestos Project Team 1 | Leader | | | Αŗ | D
proved by: <u>3</u> | ARLING.MARY.N.
59717 | 1231 Digitally signed by DARLING,MART,N.1231359717 DN: c=US, c=US, Government, ou=DOJ, ou=PKI, ou=USA, cn=DARLING,MARY,N.1231359717 Date: 2012.11.05.11:46:41-06'00' | Date: _ | | | | M | lary N. Darling, I | PMP | | | | | U | SACE, Project M | anager | | | Description **REVISION LOG:** Revision # Revision Date # **A2. TABLE OF CONTENTS** | A1. TIT | LE AND APPROVAL SHEET | . 2 | |-------------|---------------------------------------|-----| | A2. TAI | BLE OF CONTENTS | . 3 | | A3. DIS | TRIBUTION LIST | . 9 | | A4. PRO | DJECT TASK ORGANIZATION | 10 | | A4.1 | Project Management | 10 | | A4.2 | Technical Support | | | A4. | 2.1 SAP/QAPP Development | 12 | | A4. | 2.2 Field Sampling Activities | | | A4. | , e | | | A4. | 2.4 Data Management | 13 | | A4.3 | Quality Assurance | | | | DBLEM DEFINITION/BACKGROUND | | | A5.1 | Site Background | | | A5.2 | Reasons for this Project | | | A5.3 | Applicable Criteria and Action Limits | | | A6. PRO | DJECT DESCRIPTION | | | A6.1 | Project Summary | 15 | | A6.2 | Work Schedule | | | A6.3 | Location to be Studied | 15 | | A6.4 | Resources and Time Constraints | 15 | | A7. QU | ALITY OBJECTIVES AND CRITERIA | 15 | | A7.1 | Data Quality Objectives | 15 | | A7.2 | Performance Criteria | | | A7.3 | Precision | | | A7.4 | Bias/Accuracy and Representativeness | 16 | | A7.5 | Completeness | | | A7.6 | Comparability | 17 | | A7.7 | Method Sensitivity | | | A8. SPE | CIAL TRAINING/CERTIFICATIONS | 17 | | A8.1 | Field | 17 | | A8. | 1.1 CDM Smith Field Support Staff | 17 | | A8. | 1.2 Commercial Logging Workers | 18 | | A8.2 | Laboratory | 18 | | A8.2 | V | | | A8.2 | , 0 0 | | | A8.2 | 2.3 Analyst Training | 20 | | A9. DO | CUMENTATION AND RECORDS | 21 | |-------------|---------------------------------------|----| | A9.1 | Field Documentation | 21 | | A9.2 | Laboratory | 21 | | A9.3 | Record of Modification | | | B1. STU | DY DESIGN | 23 | | B1.1 | Sampling Location | 23 | | B1.2 | Logging Activities | 23 | | B1.3 | Air Sampling Design | | | B1.3 | - 0 | | | B1.3 | 2.2 Exterior Monitoring | | | B1.4 | Study Variables | | | B1.5 | Critical Measurements | | | B1.6 | Data Reduction and Interpretation | | | | - | | | B2. SAN | IPLING METHODS | 27 | | B2.1 | Air Sample Collection | 27 | | B2.1 | .1 Interior Monitoring | 28 | | B2.1 | .2 Exterior Monitoring | 28 | | B2.2 | · · · · · · · · · · · · · · · · · · · | | | B2.3 | Equipment Decontamination | | | B2.4 | Handling Investigation-derived Waste | | | B3. SAM | IPLE HANDLING AND CUSTODY | 29 | | B3.1 | Sample Documentation | 29 | | ВЗ.1 | | | | ВЗ.1 | , e | 31 | | B3.2 | Sample Labeling and Identification | | | B3.3 | Field Sample Custody | 32 | | B3.4 | Chain of Custody | | | B3.5 | Sample Packaging and Shipping | | | B3.6 | Holding Times | | | B3.7 | Archival and Final Disposition | | | B4. ANA | ALYTICAL METHODS | 34 | | B4.1 | Analysis of LA in Air | 34 | | B4.1 | .1 Sample Preparation | | | | .2 Analysis Method | | | | .3 Counting Rules | | | | .4 Stopping Rules | | | B4.2 | Analytical Data Reports | | | B4.3 | Laboratory Data Reporting Tools | | | B4.4 | Analytical Turn-around Time | | | B4.5 | Custody Procedures | | | B5. QUAL | ITY ASSURANCE/QUALITY CONTROL | 37 | |-----------------|--|----| | B5.1 F | ield | 37 | | B5.1.1 | | | | B5.1.2 | e | | | B5.1.3 | · | | | B5.1.4 | Field QC Samples | 39 | | B5.2 L | aboratory | 39 | | B5.2.1 | | | | B5.2.2 | Modification Documentation | 40 | | B5.2.3 | Laboratory QC Analyses | 40 | | B6/B7. EQ | UIPMENT MAINTENANCE AND INSTRUMENT CALIBRATION | 41 | | B6/B7.1 | Field Equipment | 41 | | | 1.1 Field Equipment Maintenance | | | | 1.2 Air Sampling Pump Calibration | | | | Laboratory Instruments | | | - | CTION/ACCEPTANCE OF SUPPLIES AND CONSUMABLES | | | B8.1 Fie | ld Supplies | 42 | | | poratory Supplies | | | | DIRECT MEASUREMENTS | | | | A MANAGEMENT | | | B10.1 | Field Data Management | 1/ | | B10.1
B10.2 | Analytical Laboratory Data Management | | | B10.2 | Libby Project Database | | | B10.3 | Data Reporting | | | | 1 | | | C1. ASSES | SSMENT AND RESPONSE ACTIONS | 47 | | C1.1 As | sessments | 47 | | | esponse Actions | | | | TO MANAGEMENT | | | D1. DATA | REVIEW, VERIFICATION AND VALIDATION | 48 | | D1.1 | Data Review | 15 | | D1.1
D1.2 | Criteria for LA Measurement Acceptability | | | | - * | | | D2. VEKII | FICATION AND VALIDATION METHODS | | | D2.1 | Data Verification | | | D2.2 | Data Validation | 49 | | D3. RECO | NCILIATION WITH USER REQUIREMENTS | 51 | | REFEREN | CES | 53 | # LIST OF FIGURES | Figure A-1 | Organizational Chart | |------------|----------------------| | | | Figure B-1 Location of Upper Flower Creek Timber Sale, Unit 16 # LIST OF TABLES | Table B-1 | Air Sample Collection Summary | |-----------|--| | Table D-1 | General Evaluation Methods for Assessing Asbestos Data Usability | # LIST OF APPENDICES | Appendix A | Data Quality Objectives | |------------|---| | Appendix B | Commercial Logging Narrative | | Appendix C | Standard Operating Procedures (SOPs) | | Appendix D | Analytical Requirements Summary Sheet [OPPLOG-1012] | #### LIST OF ACRONYMS AND ABBREVIATIONS 95UCL 95% upper confidence limit ABS activity-based sampling ACM asbestos-containing material cc cubic centimeters CDM Smith CDM Federal Programs Corporation CERCLA Comprehensive Environmental Response, Compensation, and Liability Act CFR Code of Federal Regulations CHISQ chi-squared CI confidence interval COC chain-of-custody DQO data quality objective EDD electronic data deliverable EDS energy dispersive spectroscopy EDXA energy-dispersive x-ray EPA U.S. Environmental Protection Agency EPC exposure point concentration ERT EPA Environmental Response Team ESAT EPA Environmental Services Assistance Team f/cc fibers per cubic centimeter Fousts Fousts, Inc. FS feasibility study FSDS field sample data sheets FTL field team leader GPS global positioning system H & S health and safetyHASP health and safety planHQ hazard quotient ID identification IDW investigative-derived waste ISO International Organization for Standardization IUR inhalation unit risk L liters L/min liters per minute LA Libby amphibole LC laboratory coordinator MCE mixed cellulose ester MDEQ Montana Department of Environmental Quality MDNRC Montana Department of Natural Resources and Conservation mm millimeter mm² square millimeters Ν number of asbestos fibers **NIST** National Institute of Standards and Technology **NVLAP** National Voluntary Laboratory Accreditation Program Occupational Safety and Health Administration OSHA OU operable unit OU4 Operable Unit 4 **PCM** phase contrast microscopy **PCME** phase contrast microscopy-equivalent pdf portable document format PLM polarized light microscopy OA quality assurance QA/QC quality assurance/quality control QAM quality assurance manager **QAPP** quality assurance project plan **QATS** quality assurance technical support QC quality control **RBC** risk-based concentration RfC reference concentration RI remedial investigation **RME** reasonable maximum exposure **ROM** record of modification RPM Remedial Project Manager s/cc structures per cubic centimeter SAED selected area electron diffraction SAP sampling and analysis plan Shaw Shaw Environmental, Inc. Site Libby Asbestos Superfund Site SOP standard operating procedure SRM standard reference material short-term exposure limit Stoltze F.H. Stoltze Land & Lumber Company **TAS** target analytical sensitivity TEM transmission electron microscopy **TWA** time-weighted average **TWF** time-weighting factor micrometer μm STEL USACE U.S. Army Corps of Engineers **USFS** U.S. Forest Service **USGS** U.S. Geological Survey # A Project Management ### A3. DISTRIBUTION LIST Copies
of this completed and signed sampling and analysis plan/quality assurance project plan (SAP/QAPP) should be distributed to: # U.S. Environmental Protection Agency, Region VIII 1595 Wynkoop Street, Denver, Colorado 80202-1129 - Victor Ketellapper, <u>Ketellaper.Victor@epa.gov</u> (1 hard copy, electronic copy) - Elizabeth Fagen, Fagen. Elizabeth@epa.gov (electronic copy) - Don Goodrich, <u>Goodrich.Donald@epa.gov</u> (electronic copy) - Dania Zinner, Zinner. Dania@epa.gov (electronic copy) - Deborah McKean, McKean. Deborah@epa.gov (electronic copy) - David Berry, <u>Berry.David@epa.gov</u> (electronic copy) ### **EPA Information Center - Libby** 108 East 9th Street, Libby, Montana 59923 - Mike Cirian, Cirian.Mike@epa.gov (1 hard copy, electronic copy) # Montana Department of Natural Resources and Conservation, Libby Unit Office 177 State Lands Office Road, Libby, MT 59923 - Mark Peck, MPeck@mt.gov (electronic copy) - Jeremy Rank, IRank@mt.gov (electronic copy) #### Montana Department of Environmental Quality 1100 North Last Chance Gulch, Helena, Montana 59601 - Carolyn Rutland, CRutland@mt.gov (electronic copy) # F.H. Stoltze Land & Lumber Co. P.O. Box 1429, Columbia Falls, MT 59912 Paul McKenzie, <u>pmckenzie@stoltzelumber.com</u> (1 hard copy, electronic copy) #### Fousts, Inc. P.O. Box 268, Bonners Ferry, Idaho 83805 - Tom Foust (1 hard copy) #### TechLaw, Inc. ESAT, Region VIII, 16194 West 45th Drive, Golden, Colorado 80403 - Doug Kent, <u>Kent.Doug@epa.gov</u> (electronic copy) # CDM Smith - Libby Field Office 60 Port Boulevard, Suite 201, Libby, Montana 59923 - Dominic Pisciotta, <u>pisciottaDM@cdmsmith.com</u> (3 hard copies, electronic copy) - Terry Crowell, <u>crowellTL@cdmsmith.com</u> (electronic copy) - Damon Repine, repineDL@cdmsmith.com (electronic copy) #### **CDM Smith - Denver Office** 555 17th Street, Suite 1100, Denver, Colorado 80202 - Nathan Smith, smithNT@cdmsmith.com (electronic copy) Copies of the SAP/QAPP will be distributed to the individuals above by CDM Federal Programs Corporation (CDM Smith), either in hard copy or in electronic format (as indicated above). The CDM Smith Project Manager (or their designate) will distribute updated copies each time a SAP/QAPP revision occurs. An electronic copy of the final, signed SAP/QAPP (and any subsequent revisions) will also be posted to the Libby Field eRoom. # **A4. PROJECT TASK ORGANIZATION** **Figure A-1** presents an organizational chart that shows lines of authority and reporting responsibilities for this project. The following sections summarize the entities and individuals that will be responsible for providing project management, SAP/QAPP development, field sampling support, on-site field coordination, analytical support, data management, and quality assurance for this project. # A4.1 Project Management The U.S. Environmental Protection Agency (EPA) is the lead regulatory agency for Superfund activities within the Libby Asbestos Superfund Site (Site). The EPA Region VIII Libby Asbestos Project Team Leader is Victor Ketellapper. The EPA Regional Project Manager (RPM) for this sampling effort is Elizabeth Fagen. The EPA Region VIII Onsite RPM for this sampling effort is Michael Cirian. The U.S. Army Corps of Engineers (USACE), Omaha District, provides project management, environmental engineering, and remediation support to EPA at the Site. The USACE Program Managers are Mark Herse and Mary Darling. The USACE Construction Control Representatives are Jeremy Ayala, Jeff Hubbard, and Mark Buss. The Montana Department of Environmental Quality (MDEQ) is the support regulatory agency for Superfund activities at the Site. The MDEQ Project Manager for this sampling effort is Carolyn Rutland. The EPA will consult with MDEQ as provided for by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the National Contingency Plan, and applicable guidance in conducting Superfund activities. The Montana Department of Natural Resources and Conservation (MDNRC) is the regulatory agency responsible for the parcel of land where activities are to occur as part of this SAP/QAPP. The EPA will consult with the MDNRC for all activities being performed on the parcel of land as part of this SAP/QAPP. The Unit Manger for the Libby Unit Office of the MDNRC is Mark Peck. The Management Forester for the Libby Unit Office is Jeremy Rank. # A4.2 Technical Support # A4.2.1 SAP/QAPP Development This SAP/QAPP was developed by CDM Smith at the direction of, and with oversight by, the EPA. This SAP/QAPP contains all the elements required for both a SAP and a QAPP and has been developed in general accordance with the EPA Requirements for Quality Assurance Project Plans, EPA QA/R-5 (EPA 2001) and the Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA QA/G4 (EPA 2006). Copies of the SAP/QAPP will be distributed by the CDM Smith Project Manager (or their designate), either in hard copy or in electronic format, as indicated in Section A3. The CDM Smith Project Manager (or their designate) will distribute updated copies each time a SAP/QAPP revision occurs. An electronic copy of the final, signed SAP/QAPP (and any subsequent revisions) will also be posted to the Libby Field eRoom. # A4.2.2 Field Sampling Activities Commercial logging activities will be performed in the Upper Flower Creek Timber Unit 16, which was part of the timber sale contract between F.H. Stoltze Land & Lumber Co. (Stoltze) and MDNRC. Paul McKenzie will be point of contact at Stoltze for this commercial logging effort. Fousts, Inc. (Fousts) is a commercial logging contractor that has been hired by Stoltze to harvest timber from this unit. Fousts will be responsible for implementation of the commercial logging activities. Tom Fousts will be the point of contact at Fousts responsible for this commercial logging effort. CDM Smith will be responsible for providing field logistical support (e.g., preparing sampling pumps, completing necessary field documentation) for the air sampling program described in this SAP/QAPP. Field support will be provided under a contract agreement with the USACE (Contract No. W9128F-11-D-0023). Key CDM Smith personnel that will be involved in this sampling program include: - Dominic Pisciotta, Field Team Leader - Tracy Dodge, Sample Coordinator - Scott Miller, Field Data Manager - Terry Crowell, Quality Assurance Coordinator - Damon Repine, Health and Safety Manager ### A4.2.3 Asbestos Analysis All samples collected as part of this project will be sent for preparation and analysis for asbestos at laboratories selected and approved by the EPA to support the Site. The EPA Environmental Services Assistance Team (ESAT) is responsible for procuring all analytical and preparation laboratory services and providing direction to the analytical laboratories. Don Goodrich (EPA Region 8) is responsible for managing the ESAT laboratory support contract for asbestos. The ESAT Region 8 Team Manager at TechLaw, Inc. is Mark McDaniel. He is also the designated laboratory coordinator (LC) for the Libby project that is responsible for directing the analytical laboratories, prioritizing analysis needs, and managing laboratory capacity. # A4.2.4 Data Management All data generated as part of this sampling effort will be managed and maintained in Scribe. The EPA Environmental Response Team (ERT) is responsible for the administration of all Scribe data management aspects of this project. Joseph Schafer is responsible for overseeing the ERT data management support contract. ERT is responsible for the development and management of Scribe and the project-specific data reporting requirements for the Libby project. The CDM Smith field data manager (Scott Miller) is responsible for uploading sample information to the field Scribe project database. ESAT is responsible for uploading new analytical results to the analytical Scribe project database. The ESAT project data manager for the Libby project is Janelle Lohman (TechLaw, Inc.). Because of the quantity and complexity of the data collected at the Site, the EPA has designated a Libby Data Manager to manage and oversee the various data support contractors. The EPA Region 8 Data Manager for the Libby project is Jeff Mosal. ### A4.3 Quality Assurance There is no individual designated as the EPA Quality Assurance Manager for the Libby project. Rather, the Region 8 QA program has delegated authority to the EPA RPMs. This means that the EPA RPMs have the ability to review and approve governing investigation documents developed by Site contractors. Thus, it is the responsibility of the EPA RPM for this sampling effort (Elizabeth Fagen), who is independent of the entities planning and obtaining the data, to ensure that this SAP/QAPP has been prepared in accordance with the EPA QA guidelines and requirements. The EPA RPM is also responsible for managing and overseeing all aspects of the quality assurance/quality control (QA/QC) program for this sampling effort. In this regard, the RPM is supported by the EPA Quality Assurance Technical Support (QATS) contractor, Shaw Environmental, Inc. (Shaw). The QATS contractor will evaluate and monitor laboratory QA/QC and is responsible for performing annual audits of each analytical laboratory. Terry Crowell (CDM Smith) is the field Quality Assurance Coordinator for this project. Ms. Crowell is responsible for evaluating and monitoring field QA/QC, for providing oversight of field sampling and data collection activities, and for designating a qualified individual to conduct the field surveillance (see Section B5.1.3). # A5. PROBLEM DEFINITION/BACKGROUND # A5.1 Site Background Libby is a community in northwestern Montana located 7 miles southwest of a vermiculite mine that operated from the 1920s until 1990. The mine began limited operations in the 1920s and was
operated on a larger scale by the W.R. Grace Company from approximately 1963 to 1990. Studies revealed that the vermiculite from the mine contains amphibole-type asbestos, referred to as Libby amphibole (LA). Epidemiological studies revealed that workers at the mine had an increased risk of developing asbestos-related lung disease (McDonald *et al.* 1986, Amandus and Wheeler 1987, Amandus *et al.* 1987, Sullivan 2007). Additionally, radiographic abnormalities were observed in 17.8 percent (%) of the general population of Libby including former workers, family members of workers, and individuals with no specific pathway of exposure (Peipins *et al.* 2003). Although the mine has ceased operations, historic or continuing releases of LA from mine-related materials could be serving as a source of on-going exposure and risk to current and future residents and workers in the area. The Site was listed on the National Priorities List in October 2002. # **A5.2** Reasons for this Project Previous investigations conducted at the Site have demonstrated that LA is present in environmental source media (e.g., soil, tree bark, duff material¹) at locations in and around the Site. As a result, individuals may be exposed to LA that is released to air during commercial logging operations. These inhalation exposures may pose a risk of cancer and/or non-cancer effects. It is possible that LA structures in duff and tree bark may be released into the air during commercial logging operations, which could result in inhalation exposures to commercial logging crews. Available data are not adequate to support reliable quantitative estimation of the air concentrations of asbestos fibers that may occur as a result of commercial logging operations in OU4. Thus, measured data are needed to provide information on potential inhalation exposures of LA to individuals engaging in commercial logging activities in OU4. Stoltze is planning to harvest timber from within Upper Flower Unit 16, which is located within OU4, in early November 2012. Thus, EPA will utilize this event to collect opportunistic air samples that will provide measured data on LA concentrations in air during commercial logging activities. ¹ Duff material includes leaf litter and partially decayed organic debris (e.g., twigs, leaves, pine needles) that occurs on the ground surface. # A5.3 Applicable Criteria and Action Limits There are no criteria or action limits that apply specifically to exposure of workers or other individuals to LA conducting logging and timber manufacturing operations. However, criteria for exposure of workers to asbestos in workplace air have been established by the Occupational Safety and Health Administration (OSHA). The short-term (15-minute) exposure limit (STEL) is 1.0 fiber per cubic centimeter of air (f/cc), and the long-term time-weighted average (TWA) exposure limit is 0.1 f/cc. Both exposure limits are expressed in terms of phase contrast microscopy (PCM) fibers (OSHA 2002), which does not distinguish between asbestos and non-asbestos fibers. # A6. PROJECT DESCRIPTION ### A6.1 Project Summary The purpose of this investigation is to collect air samples during commercial logging activities to provide measured data on concentrations of LA in air. Basic tasks that are required to implement this investigation are described in greater detail in subsequent sections of this SAP/QAPP. #### A6.2 Work Schedule It is anticipated that timber harvesting activities for this unit will occur in early November 2012 and it will take approximately two weeks to complete logging efforts for the entire unit. #### A6.3 Location to be Studied The location in OU4 where commercial logging activities will be performed is Unit 16 of the Upper Flower timber parcel. This area is described in more detail in Section B1.1. #### A6.4 Resources and Time Constraints Because commercial logging activities will be performed by Fousts and will utilize specialized equipment, the timing of the sampling effort will be dictated by availability of Fousts workers and the commercial logging equipment. # A7. QUALITY OBJECTIVES AND CRITERIA ### A7.1 Data Quality Objectives Data quality objectives (DQOs) are statements that define the type, quality, quantity, purpose, and use of data to be collected. The design of a study is closely tied to the DQOs, which serve as the basis for important decisions regarding key design features such as the location of samples to be collected and the types of analyses to be performed. The EPA has developed a seven-step process for establishing DQOs to help ensure that data collected during a field sampling program will be adequate to support reliable site-specific decision-making (EPA 2001, 2006). **Appendix A** provides the detailed implementation of the seven-step DQO process associated with this sampling effort. #### A7.2 Performance Criteria The range of LA concentrations that will occur in air during commercial logging activities in OU4 is not known. However, it is possible to estimate the concentration levels that correspond to a potential level of human health concern. These calculations are provided in Section B4. The analytical requirements for LA measurements in air as established in Section B4 ensure concentrations will be reliably detected and quantified if present at levels of concern. #### A7.3 Precision The precision of asbestos measurements is determined mainly by the number (N) of asbestos fibers counted in each sample. The coefficient of variation resulting from random Poisson counting error is equal to $1/N^{0.5}$. In general, when good precision is needed, it is desirable to count a minimum of 3-10 fibers per sample, with counts of 20-25 fibers per sample being optimal. Recount and repreparation analyses will be performed as part of the TEM analysis (see Section B5.2.3). These analyses will provide information on analysis reproducibility and precision (both inter- and intra-laboratory). #### A7.4 Bias/Accuracy and Representativeness There is no established set of reference materials or spiked standards that can be used to assess accuracy of TEM analyses of LA in air. Results for field blanks and laboratory blanks will be utilized to ensure that air sample results are not biased as a consequence of cross-contamination due to field sampling procedures or preparation and analysis methods. It is expected that LA levels in air may vary as a function of the location, the logging activities performed, and meteorological conditions. For the purposes of this opportunistic sampling effort, air sample collection will be performed under authentic commercial logging activities at a location in OU4, not a set of scripted simulation scenarios, which ensures that results are representative of commercial logging exposures in OU4. # A7.5 Completeness Target completeness for this project is 100%. If any samples of air are not collected, or if LA analysis is not completed successfully, this could result in that portion of the study providing no useful information. # A7.6 Comparability The data generated during this study will be obtained using sample collection, preparation, and analysis methods for measuring LA in air used previously in other Libby-specific studies. The use of consistent methods will yield data that are comparable to previous results of LA analyses in air. # A7.7 Method Sensitivity The method sensitivity (analytical sensitivity) needed for the analysis of LA in air is discussed in Section B4. # A8. SPECIAL TRAINING/CERTIFICATIONS #### A8.1 Field # A8.1.1 CDM Smith Field Support Staff Asbestos is a hazardous substance that can increase the risk of cancer and serious non-cancer effects in people who are exposed by inhalation. Therefore, all individuals involved in the collection of samples must have appropriate training. Prior to starting any field work, any new field team member must complete the following, at a minimum: | Training Requirement | Location of Documentation Specifying Training Requirement Completion | |---|--| | Read and understand the governing Health and | HASP signature sheet | | Safety Plan (HASP) | | | Attend an orientation session with the field | Orientation session attendance sheet | | health and safety (H&S) manager | | | Occupational Safety and Health Administration | OSHA training certificates | | (OSHA) 40-Hour Hazardous Waste Operations | | | and Emergency Response (HAZWOPER) and | | | relevant 8-hour refreshers | | | Current 40-hour HAZWOPER medical clearance | Physician letter in the field personnel files | | Respiratory protection training, | Training certificate | | as required by 29 CFR 1910.134 | | | Asbestos awareness training, | Training certificate | | as required by 29 CFR 1910.1001 | | | Sample collection techniques | Orientation session attendance sheet | All training documentation will be stored in the CDM Smith field office. It is the responsibility of the CDM Smith field H&S manager to ensure that all training documentation is up-to-date and on-file for each field team member. Prior to beginning field sampling activities, a field planning meeting will be conducted to discuss and clarify the following: - Objectives and scope of the fieldwork - Equipment and training needs - Field operating procedures, schedules of events, and individual assignments - Required quality control (QC) measures - Health and safety requirements It is the responsibility of each field team member to review and understand all applicable governing documents associated with this sampling program, including this SAP/QAPP, all associated standard operating procedures (SOPs) (see **Appendix C**), and any applicable HASPs. ### A8.1.2 Commercial Logging Workers Commercial logging workers shall abide by any standard protocols and procedures, as well as any occupational training and H&S requirements of the governing HASP for their
respective organization. It is the responsibility of the governing organization to manage and maintain appropriate training/certification documentation. #### A8.2 Laboratory ### A8.2.1 Certifications All analytical laboratories participating in the analysis of samples for the Libby project are subject to national, local, and project-specific certifications and requirements. Each laboratory is accredited by the National Institute of Standards and Technology (NIST) and National Voluntary Laboratory Accreditation Program (NVLAP) for the analysis of airborne asbestos by transmission electron microscopy (TEM). This includes the analysis of NIST/NVLAP standard reference materials (SRMs), or other verified quantitative standards, and successful participation in two proficiency rounds per year of airborne asbestos by TEM supplied by NIST/NVLAP. Copies of recent proficiency examinations from NVLAP or an equivalent program, as well as certifications from other state and local agencies, are maintained by each participating analytical laboratory. Copies of all proficiency examinations and certifications are also maintained by the laboratory coordinator (LC). Each laboratory working on the Libby project is also required to pass an on-site EPA laboratory audit. The details of this EPA audit are discussed in Section C1.1.2. The LC also reserves the right to conduct any additional investigations deemed necessary to determine the ability of each laboratory to perform the work. Each laboratory also maintains appropriate certifications from the state and possibly other certifying bodies for methods and parameters that may also be of interest to the Libby project. These certifications require that each laboratory has all applicable state licenses and employs only qualified personnel. Laboratory personnel working on the Libby project are reviewed for requisite experience and technical competence to perform asbestos analyses. Copies of personnel resumes are maintained for each participating laboratory by the LC in the Libby project file. A8.2.2 Laboratory Team Training/Mentoring Program # **Initial Mentoring** The orientation program to help new laboratories gain the skills needed to perform reliable analyses at the Site involves successful completion of a training/mentoring program that was developed for new laboratories prior to their analysis of Libby field samples. All new laboratories are required to participate in this program. The training program includes a rigorous 2-3 day period of on-site training provided by senior personnel from those laboratories already under contract on the Libby project, with oversight by the QATS contractor. The tutorial process includes a review of morphological, optical, chemical, and electron diffraction characteristics of LA, as well as training on project-specific analytical methodology, documentation, and administrative procedures used on the Libby site. The mentor will also review the analysis of at least one sample by each type of analytical method with the trainee laboratory. # Site-specific Reference Materials Because LA is not a common form of asbestos, the U.S. Geological Survey (USGS) prepared site-specific reference materials using LA collected at the Libby mine site (EPA 2008a). Upon entry into the Libby program, each laboratory is provided samples of these LA reference materials. Each laboratory is required to analyze multiple LA structures present in these samples by TEM in order to become familiar with the physical and chemical appearance of LA and to establish a reference library of LA energy dispersive spectroscopy (EDS) spectra. These laboratory-specific and instrument-specific LA reference spectra (EPA 2008b) serve to guide the classification of asbestos structures observed in Libby field samples during TEM analysis. # Regular Technical Discussions Ongoing training and communication is an essential component of QA for the Libby project. To ensure that all laboratories are aware of any technical or procedural issues that may arise, a regular teleconference is held between the EPA, their contractors, and each of the participating laboratories. Other experts (e.g., USGS) are invited to participate when needed. These calls cover all aspects of the analytical process, including sample flow, information processing, technical issues, analytical method procedures and development, documentation issues, project-specific laboratory modifications, and pertinent asbestos publications. # Professional/Technical Meetings Another important aspect of laboratory team training has been the participation in technical conferences. The first of these technical conferences was hosted by USGS in Denver, Colorado, in February 2001, and was followed by another held in December 2002. The Libby laboratory team has also convened on multiple occasions at the Johnson Conference in Burlington, Vermont, including in July 2002, July 2005, July 2008, and July 2011, and at the Michael E. Beard Asbestos Conference in San Antonio, Texas in January 2010. In addition, members of the Libby laboratory team attended an EPA workshop to develop a method to determine whether LA is present in a sample of vermiculite attic insulation held in February 2004 in Alexandria, Virginia. These conferences enable the Libby laboratory and technical team members to have an on-going exchange of information regarding all analytical and technical aspects of the project, including the benefits of learning about developments by others. ### A8.2.3 Analyst Training All TEM analysts for the Libby project undergo extensive training to understand TEM theory and the application of standard laboratory procedures and methodologies. The training is typically performed by a combination of personnel, including the laboratory manager, the laboratory QAM, and senior TEM analysts. In addition to the standard TEM training requirements, trainees involved with the Libby project must familiarize themselves with Site-specific method deviations, project-specific documents, and visual references. Standard samples that are often used during TEM training include known pure (traceable) samples of chrysotile, amosite, crocidolite, tremolite, actinolite and anthophyllite, as well as fibrous non-asbestos minerals such as vermiculite, gypsum, antigorite, kaolinite, and sepiolite. New TEM analysts on the Libby project are also required to perform an EDS spectra characterization evaluation (similar to EPA 2008b) on the LA-specific reference materials provided during the initial training program to aide in LA mineralogy recognition and definition. Satisfactory completion of each of these tasks must be approved by a senior TEM analyst. All TEM analysts are also trained in the Site-specific laboratory QA/QC program requirements for TEM (see Section B5.2.3). The entire program is discussed to ensure understanding of requirements and responsibilities. In addition, analysts are trained in the project-specific reporting requirements and data reporting tools utilized in transmitting results. Upon completion of training, the TEM analyst is enrolled as an active participant in the Libby laboratory program. A training checklist or logbook is used to assure that the analyst has satisfactorily completed each specific training requirement. It is the responsibility of the laboratory QAM to ensure that all TEM analysts have completed the required training requirements. #### A9. DOCUMENTATION AND RECORDS #### A9.1 Field Documentation Field teams will record sample information on the most current version of the Site-specific field sample data sheet (FSDSs)² for air samples. Section B3.1 provides detailed information on the sample documentation requirements for samples collected as part of this study. In brief, the FSDS forms document the unique sample identification (ID) number assigned to every sample collected as part of this program. In addition, the FSDSs provide information on whether the sample is representative of a field sample or a field-based QC sample (e.g., field blank, field duplicate). The field teams will also record information related to sample collection in a field logbook. ### A9.2 Laboratory All preparation and analytical data for asbestos generated in the laboratory will be documented on Site-specific laboratory bench sheets and entered into a database or spreadsheet electronic data deliverable (EDD) for submittal to the data managers. Section B4.2 provides detailed information on the requirements for laboratory documentation and records. #### A9.3 Record of Modification It is the also responsibility of the field team and analytical laboratory staff to maintain logbooks and other internal records throughout the sample lifespan as a record of sample handling procedures. Significant deviations (i.e., those that impact or have the potential to impact investigation objectives) from this SAP/QAPP, or any procedures referenced herein governing sample handling, will be discussed with the EPA Project Manager (or their designate) and the CDM Smith Project Manager prior to implementation. Such deviations will be recorded on a Record of Modification (ROM) form. Sections B5.1.2 and B5.2.2 provide detailed information on ² The most recent versions of the FSDS form templates are available in the Libby Field eRoom. | the procedures for preparing and submitting ROMs by field and analytical laboratory personnel, respectively. | | | |--|--|--| # **B** Data Generation and Acquisition ### **B1. STUDY DESIGN** # **B1.1** Sampling Location Commercial logging activities will be performed within an area of OU4 referred to as the Upper Flower Creek timber sale site. Timber will be harvested from Unit 16. This unit is roughly 51 acres in size and the timber designated for removal is approximately 2,350
tons. **Figure B-1** illustrates where Unit 16 located. # **B1.2** Logging Activities Commercial logging operations can encompass a variety of different activities. Unlike other activity-based sampling (ABS) investigations that have been conducted for the Site, which collect air sampling under precise scripts that dictate the types and durations of each activity, for this effort, air samples will be collected under authentic commercial logging conditions. **Appendix B** provides a detailed narrative for the types of activities that will be performed as part of this commercial logging effort. In brief, the following types of activities are expected to be evaluated as part of this sampling effort: - <u>Felling of Timber</u> The felling of timber is the process of severing the tree from the stump and placing it on the ground. - <u>Skidding of Timber</u> The skidding of timber is the process of moving trees that have been felled to a centralized location for further processing or transportation. - <u>Processing of Timber</u> Timber processing is the act of cutting limbs from the tree and cutting the tree into the desired length and width. - <u>Debarking of Timber</u> Debarking is the act of removing the outer bark from the log. - <u>Transporting of Timber</u> Transporting of timber is simply moving the processed logs from the harvest location to the manufacturing facility. It generally encompasses three basic steps – loading, hauling, and unloading. For the purposes of this sampling effort, only the loading step will be evaluated. # FIGURE B-1. LOCATION OF UPPER FLOWER CREEK TIMBER SALE, UNIT 16 1 inch = 674 feet Unit map provided by F.H. Stoltze Land & Lumber Co. # **B1.3** Air Sampling Design **Table B-1** summarizes the number and types of air samples that will be collected as part of this sampling effort. The following subsections provide detailed information on the air sampling study design. Table B-1. Air Sample Collection Summary | Air Sample Type | Total Number of Samples | |--------------------|---| | Interior, Baseline | 5 (1 per machine on Day 1) | | Interior, ABS | 30 (2 per day, 3 days/activity, 5 activities) | | Exterior, Baseline | 2 (1 per monitor on Day -1) | | Exterior, ABS | 20 (2 per day, 10 days) | Note: Air monitoring should only be conducted if it can be done safely and without impeding the progress of the commercial logging effort. If a sample(s) cannot be collected, this should be noted in the field logbook. # **B1.3.1** Interior Monitoring As discussed in **Appendix B**, all of the logging activities are performed using specialized heavy machinery that is operated by a worker located within an enclosed cab. Air sampling pumps will be placed inside the machine cab during logging operations to provide measured air concentrations that are representative of potential operator exposures. Air samples will be collected for a duration of approximately four hours. It is anticipated that air sample collection will begin at the start of a shift in the morning, the samples will changed out during the lunch break, and sample collection will continue through the end of the work shift. The goal is to collect three days of samples for each type of activity – felling, skidding, processing, debarking, and loading. Thus, a total of 30 interior ABS air samples may be collected (i.e., 2 samples per day x 3 days per activity x 5 activities). However, the actual number of samples collected will depend upon how long it takes to complete each type of activity for the unit. Because the equipment utilized during these commercial logging operations is not dedicated (i.e., it has been used outside of this sampling effort), it is necessary to establish baseline air concentrations inside the cabs prior to their use at the Upper Flower Creek unit. Thus, before logging operations begin at the parcel, a 15-minute air sample from within the cab of each piece of equipment will be collected to establish baseline conditions. During the 15-minute sample collection period, the operator should simulate the types of movements that would be performed under authentic activities. It is anticipated that a total of five baseline interior air samples will be collected (one per machine for each of five machines). # B1.3.2 Exterior Monitoring Two stationary monitors will be placed on the perimeter of the logging area to provide measured air concentrations that are representative of potential exposures to logging oversight staff and bystanders. These stationary monitors will also provide information on the potential for contamination migration outside of the logging area. The two stationary monitors should be placed such that they are representative of varying wind directions. Monitors should be placed near the logging operation, but set in a location where they will not be damaged by the logging activities or knocked over by the logging machinery. Each stationary monitor will collect an 8-hour sample that is representative of one day of logging activities. Exterior stationary monitoring will be performed on the same days as the interior monitoring. Assuming that interior monitoring is performed across a total of 10 days, a total of 20 exterior ABS air samples may be collected (i.e., 2 samples per day x 10 days). In order to establish the baseline condition for the unit prior to logging activities, an 8-hour sample will be collected from each stationary monitor prior to the commencement of logging activities. # **B1.4** Study Variables The level of LA in air during logging activities may depend on factors that vary temporally (e.g., soil moisture, wind speed, humidity, etc.). To the extent feasible, air monitoring will be performed across multiple days of activity to attempt to provide measured data on the potential range of LA concentrations in air under varying temporal conditions. Because this logging effort is being conducted in November, it is likely that sampling conditions will be less favorable towards the release of LA fibers. Thus, resulting LA concentration s in air may be lower than what would have been measured if the logging effort were conducted in the summer months when rainfall and soil moisture levels are at their lowest. #### **B1.5** Critical Measurements The critical measurements for this project are measurements of the concentration of LA in air during commercial logging operations at Upper Flower Creek Unit 16. The analysis of LA may be achieved using several different types of microscopes, but the EPA generally recommends using TEM because this analytical method has the ability to clearly distinguish asbestos from non-asbestos structures, and to classify different types of asbestos (i.e., LA, chrysotile). In addition, analysis by TEM provides structure-specific dimensions that allow for the estimation of PCM-equivalent³ (PCME) concentrations, which is the concentration metric necessary to estimate exposure and risks. Because it is possible that there could be various sources of LA present, information on the sodium and potassium content of each LA structure observed, as determined by energy dispersive spectroscopy (EDS), should also be recorded. This requirement is based on the observation of Meeker et al. (2003) that most particles from the Libby ore body contain detectable levels of both sodium and potassium, whereas other potential sources of LA may not. # **B1.6** Data Reduction and Interpretation Air samples collected in the field will be used to prepare grids for TEM examination (see Section B4). From this examination, the total number of PCME LA structures observed is recorded and the air concentration is calculated as follows: Cair = $$(N \cdot EFA) / (GOx \cdot Ago \cdot V \cdot 1000 \cdot f)$$ where: Cair = Air concentration (structures per cubic centimeter [s/cc]) N = Number of PCME LA structures observed (structures) EFA = Effective filter area (mm²) GOx = Number of grid openings examined Ago = Area of a grid opening (mm²) V = Sample air volume (L) 1000 = L/cc (conversion factor in liters per cubic centimeter) f = Indirect preparation dilution factor (assumed to be 1 for direct preparation) Data for PCME LA concentrations in air will be used to evaluate potential human health exposures and risks from commercial logging in OU4. # **B2. SAMPLING METHODS** # **B2.1** Air Sample Collection Air samples will be collected, handled, and documented in basic accordance with the procedures specified in Site-specific SOP EPA-LIBBY-2012-10, *Sampling of Asbestos Fibers in Air*, (see **Appendix C**). All air samples will be collected using cassettes that contain a 25-mm diameter mixed cellulose ester (MCE) filter with a pore size of 0.8 µm. $^{^3}$ PCME structures have a length greater than 5 micrometers (μ m), width greater than or equal to 0.25 μ m, and aspect ratio greater than or equal to 3:1. Each air sampling pump will be calibrated at the start of each sampling period. Section B6/B7.1 provides detailed information on calibrating the sampling pump. At the beginning of the sampling program, flow rates may be checked more frequently as conditions permit to establish expected conditions. # **B2.1.1** Interior Monitoring # 15-minute Baseline Sample The 15-minute baseline sample, collected prior to the commencement of logging activities, will be collected using F&J L-15P, or equivalent, battery-powered sampling pump capable of operating at high flow rates. The pump flow rate will be adjusted to 10 liters per minute (L/min), to result in a total air sample volume of approximately 150 liters (L). The pump will be affixed to the interior cab of the logging equipment. The monitoring cassette will be attached to the pump *via* a plastic tube, and affixed such that the cassette is within the breathing zone of the worker (i.e., shoulder height). # Logging ABS Samples For the interior ABS air samples that are collected during the logging activity, a battery-powered air
sampling pump (SKC model AirChek XR5000 TM [0.005-5.0 L/min] or similar) will be affixed to the interior cab of the logging equipment. The monitoring cassette will be attached to the pump via a plastic tube, and affixed such that the cassette is within the breathing zone of the worker (i.e., shoulder height). During the activity, two different sampling pumps will be utilized within the machine cab – a high volume (HV) pump and a low volume (LV) pump – to allow for the collection of two "replicate" filters (i.e., each filter represents the same sample collection duration, but different total sample air volumes). Only one of the two resulting air filters will be selected for analysis (see Section B4). The low flow pumps will be set to a flow rate of 2 L/min and the high flow pumps will be set to a flow rate of 4 L/min. As noted previously, for the interior ABS air samples, it is anticipated that the air cassettes will be changed out during the lunch break. Thus, the total air sample volume for a 4-hour sample will be approximately 480 L and 960 L for the LV and HV filters, respectively. ### **B2.1.2** Exterior Monitoring For the exterior air monitoring samples, a battery-powered air sampling pump (SKC model AirChek XR5000 $^{\text{TM}}$ [0.005-5.0 L/min] or similar) will be set two different stationary stands set around the perimeter of the logging activities (one upwind and one downwind). The monitoring cassette will be attached to the pump via a plastic tube, and affixed such that the cassette is approximately 5-6 feet above the ground surface (i.e., the breathing zone of a standing worker). The pump flow rate will be adjusted to 3 liters L/min, which would result in a total air sample volume of approximately 1,440 L for each 8-hour sample. # **B2.2** Global Positioning System Coordinate Collection Global positioning system (GPS) coordinates will be recorded for each stationary perimeter monitor. GPS location coordinates will be collected in general accordance with Site-specific SOP CDM-LIBBY-09, GPS Coordinate Collection and Handling (see **Appendix C**). # **B2.3** Equipment Decontamination Decontamination of non-disposable air sampling equipment will be conducted in basic accordance with the procedures specified with Site-specific SOP EPA-LIBBY-2012-04, *Field Equipment Decontamination at Nonradioactive Sites* (see **Appendix C**). Materials used in the decontamination process will be disposed of as investigation-derived waste (IDW) as described below. ### **B2.4** Handling Investigation-derived Waste Any disposable equipment or other IDW will be handled in basic accordance with the procedures specified in SOP EPA-LIBBY-2012-05, *Guide to Handling of Investigation-Derived Waste* (see **Appendix C**). In brief, IDW will be double-bagged, with the outer bag being a clear heavy-weight trash bag that has been pre-printed with 'IDW' on the outside. If pre-printed IDW bags are not available, the outer bag needs to be clearly labeled (once) using an indelible marker or a taped label. All IDW generated during this sampling program will enter the waste stream at the local class IV asbestos landfill. #### **B3. SAMPLE HANDLING AND CUSTODY** # **B3.1** Sample Documentation #### B3.1.1 Field Sample Data Sheets and Logbooks As noted previously in Section A9, field teams will record sample information on the most current version of the Site-specific FSDSs for Personal Air (for interior monitoring samples) and Stationary Air (for exterior monitoring samples). Use of standardized forms ensures consistent documentation across samplers. Hard copy FSDSs are location-specific and allow for the entry of up to three individual samples from the same location on the same FSDS form. If columns are left incomplete due to fewer than three samples being recorded on a sheet, the blank columns will be crossed out, dated, and signed by the field team member completing the FSDS. Erroneous information recorded on a hard copy FSDS will be corrected with a single line strikeout, initial, and date. The correct information will be entered in close proximity to the erroneous entry. FSDS information will be completed in the field by CDM Smith field support staff. To ensure that all applicable data is accurately entered and all fields are complete, a different field team member will check each FSDS. The team member completing the hard copy form and the team member checking the form will initial the FSDS in the proper fields. In addition, the field team leader (FTL) will also complete periodic checks of FSDSs prior to relinquishment of the samples to the field sample coordinator. Once FSDSs and samples are relinquished to the field sample coordination staff, the FSDSs are again checked for accuracy and completeness when data are input into the local Scribe field database. If a revision is required to the hard copy FSDS during any of these checks, it will be returned to the field team member initially responsible for its completion. The error will be explained to the team member and the FSDS corrected. If the team member is no longer on site, revisions will be made by sample coordination staff or the FTL. It is the responsibility of the field data manager to make the appropriate change in the local Scribe field database. Each hard copy FSDS is assigned a unique sequential number. This number will be referenced in the field logbook entries related to samples recorded on individual sheets. Field administrative staff will manage the hard copy FSDSs in their respective field office. Original FSDSs will be filed by medium and FSDS number. Hard copies of all FSDS forms will also be sent to the CDM Smith office in Denver, Colorado for archive. The field logbook is an accounting of activities at the Site and will duly note problems or deviations from the governing documents. Field logbooks will be maintained in general conformance with Site-specific SOP EPA-LIBBY-2012-01, Field Logbook Content and Control (see **Appendix C**). In addition to general logbook content requirements outlines in the SOP, the logbooks should also include information on pump calibration and flow rate verification. Separate field logbooks will be kept for each investigation and the cover of each field logbook will clearly indicate the name of the investigation and its sequence number. Field logbooks will be completed for each investigation activity prior to leaving a sampling location. Field logbooks will be checked for completeness and adherence to SOP requirements on a daily basis by the FTL or their designate for the first week of each investigation. When incorrect field logbook completion procedures are discovered during these checks, the errors will be discussed with the author of the entry and corrected. Erroneous information recorded in a field logbook will be corrected with a single line strikeout, initial, and date. The correct information will be entered in close proximity to the erroneous entry. The field administrative staff will manage the field logbooks by assigning unique identification numbers to each field logbook, tracking to whom and the date each field logbook was assigned, the general investigation activities recorded in each field logbook (e.g., ambient air monitoring), and the date when the field logbook was returned. As field logbooks are completed, originals will be catalogued and maintained by the field administrative staff in their respective field office. Scanned copies of field logbooks will be maintained on the local server for the CDM Smith office in Libby. # B3.1.2 Photographic and Video Documentation Photographic documentation will be collected with a digital camera in general conformance to SOP EPA-LIBBY-2012-02, *Photographic Documentation of Field Activities* (see **Appendix C**). Photographs should be taken to document representative examples of logging activities performed, sampling locations, site conditions during ABS activities, pre-sampling conditions, and at any other special conditions or circumstances that arise during the activity. Electronic captions will be used to describe the photographs instead of maintaining photographic logs in daily logbook entries. Photograph file names will be in the format: OPPCL_date_## where: OPPCL indicates the **Opp**ortunistic Commercial Logging effort The date is formatted as MM-DD-YY ## indicates the photo number A digital video will be prepared to document a representative example of each type of commercial logging activities. File names will be in the same format as photographic documentation listed above. ### **B3.2** Sample Labeling and Identification Samples will be labeled with sample ID numbers using self-adhesive labels (as supplied by CDM Smith). One sample label will be placed on the sampling cassette, one sample label will be affixed to the inside of the plastic bag used to hold the sampling cassette during transport. In addition, the sample ID number will also be written on the outside of the plastic bag. Sample ID numbers will identify the samples collected during this sampling effort using the following format: CL-5#### where: CL-5 = A sample ID number prefix to identify samples collected under this SAP/QAPP #### = A sequential four-digit number # **B3.3** Field Sample Custody All teams will ensure that samples, while in their possession, are maintained in a secure manner to prevent tampering, damage, or loss. All samples and FSDSs will be relinquished by field staff to the field sample coordinator or a designated secure sample storage location at the end of each day. # **B3.4** Chain of Custody The chain of custody (COC) form is used as physical evidence of sample custody and control. This record system provides the means to identify, track, and monitor each individual sample from the point of collection through final data reporting. A complete COC record is required to accompany each shipment of samples. COC procedures will follow the requirements as stated in Site-specific SOP
EPA-LIBBY-2012-06, *Sample Custody* (see **Appendix C**). At the end of each day, all samples will be relinquished to the field sample coordinator or a designated secure storage location by the sampling team following COC procedures, and an entry will be made into the field logbook indicating the time samples were relinquished and the sample coordinator who received the samples. The field sample coordinator will follow COC procedures to ensure proper sample custody between acceptance of the sample from the field teams to delivery or shipment to the laboratory. A member of the sample coordination staff will manually enter sample information from the hard copy FSDS into the local Scribe field project database using a series of standardized data entry forms developed in Microsoft Access by ESAT, referred to as the sample Data Entry Tool, or the "DE Tool". The DE Tool has a variety of built-in QC functions that improve accuracy of data entry and help maintain data integrity. After the data entry is checked against the hard copy FSDSs (by a different sample coordination staff member than completed the original data entry), the DE Tool is used to prepare an electronic COC. A three-page carbon copy COC will be generated from the electronic COC. The field sample coordinator will retain one hard copy of the COC for the project file; the other two hard copies of the COC will accompany the sample shipment. The field sample coordinator will note the analytical priority level for the samples (based on consultation with the LC) at the top of the COC. A copy of the investigation-specific Analytical Requirements Summary Sheet (see **Appendix D**) will also accompany each COC. If any errors are found on a COC after shipment, the hard copy of the COC retained by the field sample coordinator will be corrected with a single strikeout, initial, and date. A copy of the corrected COC will be provided to the LC for distribution to the appropriate laboratory. It is the responsibility of the field data manager to make any corrections to the local Scribe field project database. Sample and COC information will be published to Scribe.NET regularly from the local Scribe field project database by the field data manager (see Section B10.1 for additional details). # **B3.5** Sample Packaging and Shipping Samples will be packaged and shipped in general accordance with SOP EPA-LIBBY-2012-07, *Packaging and Shipping of Environmental Samples* (see **Appendix C**), with the following additional requirement: Custody seals will be placed on all samples collected as part of this sampling program. The zip-top sample bag containing the air cassette will be rolled parallel to the top of the bag. The custody seal will be placed perpendicular to the top of the bag such that the sample ID remains visible and the bag cannot be unrolled without breaking the seal. A custody seal will be placed over at least two sides of the shipping cooler and then secured by tape. Prior to sealing the shipping container, the sample coordinator will perform a final check of the contents of the shipment with the COC, sign and date the designated spaces at the bottom of the COC. The field sample coordinator will then place the custody seals on the shipping container. The field sample coordinator will be responsible for sending samples to the appropriate location, as specified by the LC. With the exception of samples that are hand-delivered to the EMSL Mobile Laboratory in Libby, all samples will be sent to the Troy Sample Preparation Facility (SPF) for subsequent shipment to the appropriate analytical laboratory, or archive. Samples will be hand-delivered, picked up by a courier service, or shipped by a delivery service to the designated location, as applicable. For hand-deliveries and courier pickups, samples will be packaged for transit such that they are contained and secure (i.e., will not be excessively jostled). Clean plastic totes with the lids secured or sample coolers may be used for this purpose. For samples requiring shipment, an established overnight delivery service provider (e.g., Federal Express) will be used. # **B3.6** Holding Times There are no holding time requirements for air samples collected as part of this sampling investigation. # **B3.7** Archival and Final Disposition All samples and grids will be maintained in storage at the Troy SPF or analytical laboratory unless otherwise directed by the EPA. When authorized by the EPA, the laboratory will be responsible for proper disposal of any remaining samples, sample containers, shipping containers, and packing materials in accordance with sound environmental practice, based on the sample analytical results. The laboratory will maintain proper records of waste disposal methods, and will have disposal company contracts on file for inspection. #### **B4. ANALYTICAL METHODS** This section discusses the analytical methods and requirements for samples collected in support of the opportunistic commercial logging sampling effort. This section includes detailed information on the analysis of collected air samples, as well as the data reporting requirements, sample holding times, and custody procedures. An analytical requirements summary sheet (**OPPLOG-1012**), which details the specific preparation and analytical requirements associated with this sampling program, is provided in **Appendix D**. The analytical requirements summary sheet will be reviewed and approved by all participating laboratories in this sampling program prior to any sample handling. A copy of this analytical requirements summary sheet will be submitted with each COC. # **B4.1** Analysis of LA in Air The DQOs for the commercial logging ABS effort (see **Appendix A**) provide detailed information on the sample preparation, analysis method, counting rules, and stopping rules. Each of these analysis requirements is summarized below. ### B4.1.1 Sample Preparation For the interior ABS air samples that are collected during the logging activity, two filters are collected for each sampling period – an HV filter and a LV filter. The HV filter will be analyzed in preference to the LV filter. If the HV filter is deemed to be overloaded (i.e., > 25% particulate loading on the filter), the LV filter should be analyzed in preference to performing an indirect preparation on the HV filter. If the LV filter is also deemed to be overloaded, an indirect preparation (with ashing) may be performed of the HV filter in accordance with the procedures in Libby-specific SOP EPA-LIBBY-08. The filter will be used to prepare a minimum of three grids using the grid preparation techniques described in Section 9.3 of International Organization for Standardization (ISO) 10312:1995(E). For all other air monitoring samples, only one type of filter was collected (i.e., there is not an HV/LV pair), thus the collected filter should be used to prepare a minimum of three grids using the grid preparation techniques described in Section 9.3 of ISO 10312:1995(E). If the filter is deemed to be overloaded, an indirect preparation (with ashing) may be performed in accordance with the procedures in Libby-specific SOP EPA-LIBBY-08. If filters are noted to be damp upon receipt at the laboratory (due to weather conditions during sample collection), they may be dried in accordance with the procedures specified in the most recent version of Libby Laboratory Modification⁴ #LB-000055 prior to preparation. # **B4.1.2** Analysis Method Grids will be examined by TEM in basic accordance with the recording procedures described in ISO 10312:1995(E), as modified by the most recent versions of Libby Laboratory Modifications LB-000016, LB-000029, LB-000066, LB-000067, and LB-000085. # **B4.1.3** Counting Rules Because of the high number of grid openings that are needed to achieve the target analytical sensitivity (see **Appendix A**), all air samples will be examined using counting protocols for recording PCME structures only (per ISO 10312 Annex E). That is, filters will be examined at a magnification of about 5,000x, and all amphibole structures (including not only LA but all other amphibole asbestos types as well) that have appropriate selective area electron diffraction (SAED) patterns and energy dispersive x-ray analysis (EDXA) spectra, and having length > 5 μ m, width $\geq 0.25 \mu$ m, and aspect ratio $\geq 3:1$ will be recorded on the Libby-specific TEM laboratory bench sheets and EDDs for the recording of air samples. If observed, chrysotile structures should be recorded in accordance with ISO 10312 recording procedures. ### **B4.1.4** Stopping Rules **Appendix A** provides detailed information on the derivation of the stopping rules for air samples analyzed by TEM. The stopping rules are as follows: - 1. Count a minimum of two grid openings from each of two grids. - 2. Continue counting until one of the following is achieved: - a. The target analytical sensitivity (0.00037 cc⁻¹) is achieved. - b. 25 PCME LA structures have been observed. - c. A total filter area of 10 mm² has been examined (this is approximately 1,000 grid openings). _ ⁴ Copies of all Libby Laboratory Modifications are maintained in the Libby Lab eRoom. When one of these criteria has been satisfied, complete the examination of the final grid opening and stop. For lot blanks and field blanks, the TEM analyst should examine an area of 1.0 mm² (approximately 100 grid openings). # **B4.2** Analytical Data Reports An analytical data report will be prepared by the laboratory and submitted to the appropriate LC after the completion of all required analyses within a specific laboratory job (or sample delivery group). This analytical data report may vary by laboratory and analytical method but generally includes a case narrative that briefly describes the number of samples, the analyses, and any analytical difficulties or QA/QC issues associated with the submitted samples. The data report will also include copies of the signed COC
forms, analytical data summaries, a QC package, and raw data. Raw data is to consist of instrument preparation logs, instrument printouts, and QC sample results including, instrument maintenance records, COC check in and tracking, raw data instrument print outs of sample results, analysis run logs, and sample preparation logs. The laboratory will provide an electronic scanned copy of the analytical data report to the LC and others, as directed by the LC. # **B4.3** Laboratory Data Reporting Tools Standardized data reporting tools (i.e., EDDs) have been developed specifically for the Libby project to ensure consistency between different laboratories in the presentation and submittal of analytical data. In general, unique Libby-specific EDDs have been developed for each analytical method and each medium. Since the beginning of the Libby project, each EDD has undergone continued development and refinement to better accommodate current and anticipated future data needs and requirements. EDD refinement continues based on laboratory and data user input. Electronic copies of all current EDD templates are provided in the Libby Lab eRoom. For TEM analyses, detailed raw structure data will be recorded and results will be transmitted using the Libby-specific EDDs for TEM. For PLM analyses, optical property details and results will be recorded on the Libby-specific EDDs for PLM. Standard project data reporting requirements will be met for TEM and PLM analyses. EDDs will be transmitted electronically (*via* email) to the following: - Doug Kent, <u>Kent.Doug@epa.gov</u> - Janelle Lohman, <u>Lohman.Janelle@epa.gov</u> - Holly Sprunger, Sprunger. Holly@epa.gov - Tracy Dodge, <u>DodgeTA@cdmsmith.com</u> - Phyllis Haugen, <u>HaugenPJ@cdmsmith.com</u> - Libby project email address for CDM Smith, libby@cdmsmith.com Note: ESAT is in the process of developing a new Site-specific analytical results reporting tool, referred to as the Libby Asbestos Data Tool (LADT). This tool is a relational Microsoft® Access database with a series of standard data entry forms specific to each analytical method. The LADT creates a Microsoft® Excel export file that can be directly uploaded into an analytical Scribe project database (see Section B10.4). Laboratories have the option of using LADT as a data reporting method instead of the Libby-specific EDDs. #### **B4.4** Analytical Turn-around Time Analytical turn-around time will be negotiated between the EPA laboratory coordinator (LC) and the laboratory. It is anticipated that turn-around times of 2-4 weeks are acceptable, but this may be revised as determined necessary by the EPA. ## **B4.5** Custody Procedures Specific laboratory custody procedures are provided in each laboratory's *Quality Assurance Management Plan*, which have been independently reviewed at the time of laboratory procurement. While specific laboratory sample custody procedures may differ between laboratories, the basic laboratory sample custody process is described briefly below. Upon receipt at the facility, each sample shipment will be inspected to assess the condition of the shipment and the individual samples. This inspection will include verifying sample integrity. The accompanying COC record will be cross-referenced with all of the samples in the shipment. The laboratory sample coordinator will sign the COC record and maintain a copy for their project files. Depending upon the laboratory-specific tracking procedures, the laboratory sample coordinator may assign a unique laboratory identification number to each sample on the COC. This number, if assigned, will identify the sample through all further handling at the laboratory. It is the responsibility of the laboratory manager to ensure that internal logbooks and records are maintained throughout sample preparation, analysis, and data reporting. #### **B5. QUALITY ASSURANCE/QUALITY CONTROL** #### B5.1 Field Field QA/QC activities include all processes and procedures that have been designed to ensure that field samples are collected and documented properly, and that any issues/deficiencies associated with field data collection or sample processing are quickly identified and rectified. The following sections describe each of the components of the field QA/QC program implemented at the Site. ## B5.1.1 Training Before performing field work in Libby, field personnel are required to read all governing field guidance documents relevant to the work being performed and attend a field planning meeting specific to the commercial logging sampling effort. Additional information on field training requirements is provided in Section A8.1. ## B5.1.2 Modification Documentation All field deviations from and modifications to this SAP/QAPP will be recorded on the Libby field ROM form⁵. The field ROM forms will be used to document all permanent and temporary changes to procedures contained in guidance documents governing investigation work that have the potential to impact data quality or usability. Any minor deviations (i.e., those that will not impact data quality or usability) will be documented in the field logbooks. ROMs are completed by the FTL overseeing the investigation/activity, or by assigned field or technical staff. As modifications to governing documents are implemented, the FTL will communicate the changes to the field teams conducting activities associated with the modification. Each completed field ROM is assigned a unique sequential number (e.g., LFO-000026) by the CDM Smith field QAM. A ROM tracking log for all field modifications is maintained by the field QAM. This tracking log briefly describes the ROM being documented, as well as ROM author, the reviewers, and date of approval. Once a form is prepared, it is submitted to the appropriate EPA RPM for review and approval. Copies of approved ROMs are maintained on the CDM Smith server in Libby. #### B5.1.3 Field Surveillances and Audits Field surveillances consist of periodic observations made to evaluate continued adherence to investigation-specific governing documents. One field surveillance will be conducted during the early stages of this investigation to identify any deficiencies so that any impact on project data quality is mitigated or limited. Additional field surveillances may be conducted if field processes are revised or other QA/QC procedures indicate potential deficiencies. Field audits are broader in scope than field surveillances. Audits are evaluations conducted by qualified technical or QA staff that are independent of the activities audited. Field audits can be conducted by field contractors, internal EPA staff, or EPA contracted auditors. It is the responsibility of the EPA RPM to ensure that field oversight requirements are met for each investigation. Due to the opportunistic nature of this sampling program, it is not anticipated that any field audits will be performed. ⁵ The most recent version of the field ROM form is provided in the Libby Field eRoom. #### B5.1.4 Field QC Samples Two types of field QC samples will be collected as part of this sampling program – lot blanks and field blanks. Lot Blanks Lot blanks are collected to ensure air samples for asbestos analysis are collected on asbestos-free filters. A lot blank is a randomly selected filter cassette from a manufactured lot. For this sampling effort, two lot blanks will be selected at random from the lot of cassettes to be used for the collection of ABS air samples. It is the responsibility of the FTL to submit the appropriate number of lot blanks to the laboratory prior to cassette use in the field. The lot blanks are analyzed for asbestos by TEM analysis as described above (see Section B4.1). Lot blank results will be reviewed by the FTL before any cassette in the lot is used for sample collection. The entire batch of cassettes will be rejected if any asbestos is detected on either lot blank. Only filter lots with acceptable lot blank results are placed into use for the ABS effort. #### Field Blanks Field blanks are collected to evaluate potential contamination introduced during sample collection, shipping and handling, or analysis. For this sampling effort, field blanks for ABS air will be collected at a rate of 1 per day of field sampling. It is the responsibility of each field team to collect the appropriate number of field blanks. Field blanks are collected by removing the end cap of the sample cassette to expose the filter in the same area where sample collection occurs for about 30 seconds before re-capping the sample cassette. The field blanks are analyzed for asbestos by TEM analysis as described above (see Section B4.1). For this sampling effort, all field blanks will be analyzed. If any asbestos is observed on a field blank, the FTL and/or laboratory manager will be notified and will take appropriate measures (e.g., re-training on sample collection and analysis procedures) to ensure staff are employing proper sample handling techniques. In addition, a qualifier of "FB" will be added to the related field sample results in the project database to denote that the associated field blank had asbestos structures detected. #### **B5.2** Laboratory Laboratory QA/QC activities include all processes and procedures that have been designed to ensure that data generated by an analytical laboratory are of high quality and that any problems in sample preparation or analysis that may occur are quickly identified and rectified. The following sections describe each of the components of the analytical laboratory QA/QC program implemented at the Site. #### B5.2.1 Training/Certifications All analytical laboratories participating in the analysis of samples for the Libby project are subject to national, local, and project-specific certifications and requirements. Additional information on laboratory training and certification requirements is provided in Section A8.2. Laboratories handling samples collected as part of this sampling program will be provided
a copy of and will adhere to the requirements of this SAP/QAPP. Samples collected under this SAP/QAPP will be analyzed in accordance with standard EPA and/or nationally-recognized analytical procedures (i.e., Good Laboratory Practices) in order to provide analytical data of known quality and consistency. #### **B5.2.2** Modification Documentation All deviations from project-specific and method guidance documents will be recorded on the laboratory ROM form⁶. The ROM will be used to document all permanent and temporary changes to analytical procedures. ROMs will be completed by the appropriate laboratory or technical staff. As ROMs are completed, it is the responsibility of the LC to communicate any changes to the project laboratories. When the project management team determines the need, this SAP/QAPP will be revised to incorporate necessary modifications. Copies of approved ROMs for this SAP/QAPP will be made available in the Libby Lab eRoom. #### B5.2.3 Laboratory QC Analyses The Libby-specific QC requirements for TEM analyses of asbestos are patterned after the requirements set forth by NVLAP. In brief, there are three types of laboratory-based QC analyses that are performed for TEM – laboratory blanks, recounts, and repreparations. Detailed information on the Libby-specific requirements for each type of TEM QC analysis, including the minimum frequency rates, selection procedures, acceptance criteria, and corrective actions are provided in the most recent version of Libby Laboratory Modification LB-000029, with the following investigation-specific modifications: With the exception of inter-laboratory analyses, it is the responsibility of the laboratory manager to ensure that the proper number of TEM QC analyses is completed. Inter-laboratory analyses for TEM will selected *post hoc* by the QATS contractor or their designate in accordance with the selection procedures presented in LB-000029. The LC will provide the list of selected interlaboratory analyses to the laboratory manager and will facilitate the exchange of samples between the analytical laboratories. - ⁶ The most recent version of the laboratory ROM form is available on the Libby Lab eRoom. #### **B6/B7. EQUIPMENT MAINTENANCE AND INSTRUMENT CALIBRATION** #### **B6/B7.1** Field Equipment #### *B6/B7.1.1 Field Equipment Maintenance* All field equipment should be maintained and calibrated in basic accordance with manufacturer specifications. When a piece of equipment is found to be operating incorrectly, the piece of equipment will be labeled "out of order" and placed in a separate area from the rest of the sampling equipment. The person who identified the equipment as "out of order" will notify the FTL overseeing the investigation activities. It is the responsibility of the FTL to facilitate repair of the out-of-order equipment. This may include having appropriately trained field team members complete the repair or shipping the malfunctioning equipment to the manufacturer. Field team members will have access to basic tools required to make field acceptable repairs. This will ensure timely repair of any "out of order" equipment. ## B6/B7.1.2 Air Sampling Pump Calibration Air sampling pumps will be calibrated at the start of each day's sampling period using a rotameter that has been calibrated to a primary calibration source. The primary calibration standard used at the Site is a BIOS DryCal® DC-Lite. For pre-sampling purposes, calibration will be considered complete when $\pm 5\%$ of the desired flow rate is attained, as determined by three measurements with the calibrator using a cassette reserved for calibration (from the same lot as the sample cassettes to be used in the field). Additional calibration may be performed during sample collection as described below. If at any time the observed flow rates are \pm 10% of the target rate, the sampling pump should be re-calibrated, if possible. If at any time an air sampling pump is found to have faulted or the observed flow rates are 25% below (due to heavy particulate loading or a pump malfunction) or 50% above the target rate, the pump will be replaced or the activity will be terminated. Collection of air samples will continue, regardless of the amount of particulate loading on the filters, unless the flow rate is affected. At the beginning of the sampling program, flow rates and particulate loading may be checked more frequently as conditions require, establishing expected conditions. To calculate the percentage of an observed flow to the target flow, the following formula is used: $$X\% = \frac{Observed\ Flow\ Rate\ (L/min)}{Tar\ get\ Flow\ Rate\ (L/min)} \cdot 100$$ For post-sampling calibration, three separate constant flow calibration readings will be obtained with the sampling cassette inline and those flow readings will be averaged. If the flow rate changes by more than 5% during the sampling period, the average of the pre- and post-sampling rates will be used to calculate the total sample volume. Samples for which there is more than a 30% difference from initial calibration to end calibration will be invalidated. The sample collector will record the pump serial number, sample number, initial flow rate, sample start/end times, sample locations, and final flow rate, as well as mark the sample "void," in the field logbook and FSDS. These samples will not be submitted for analysis. To prevent potential cross-contamination, each rotameter used for field calibration will be transported to and from each sampling location in a sealed zip-top plastic bag. The cap and calibration cassette used at the end of the rotameter tubing will be replaced each day after it is used. #### **B6/B7.2 Laboratory Instruments** The laboratory manager is responsible for ensuring that all laboratory instruments used for this project are maintained and calibrated in accordance with the manufacturer's instructions. If any deficiencies in instrument function are identified, all analyses shall be halted until the deficiency is corrected. The laboratory shall maintain a log that documents all routine maintenance and calibration activities, as well as any significant repair events, including documentation that the deficiency has been corrected. #### **B8. INSPECTION/ACCEPTANCE OF SUPPLIES AND CONSUMABLES** #### **B8.1 Field Supplies** In advance of field activities, the FTL will check the field equipment/supply inventory and procure any additional equipment and supplies that are needed. The FTL will also ensure any in-house measurement and test equipment used to collect data/samples as part of this SAP/QAPP is in good, working order, and any procured equipment is acceptance tested prior to use. Any items that the FTL determines unacceptable will be removed from inventory and repaired or replaced as necessary. The following list summarizes the general equipment and supplies required for most investigations: Field logbook – Used to document field sampling activities and any problems in sample collection or deviations from the investigation-specific QAPPs. See Section B3.1.3 for standard procedures for field logbooks. - FSDS forms FSDSs are medium-specific forms that are used to document sample details (i.e., sampling location, sample number, medium, field QC type, etc.). See Section B3.1.2 for standard procedures for the completion of FSDSs. - Sample number labels Sample numbers are sequential numbers with investigation-specific prefixes. Sample number labels are pre-printed and checked out to the field teams by the FTL or their designate. To avoid potential transcription errors in the field, multiple labels of the same sample number are prepared one label is affixed to the collected sample, one label is affixed to the hard copy FSDS form. Labels may also be affixed to the field logbook. - COC forms COCs are project-specific forms that are used to document sample custody from field collection through analysis reporting. See Section B3.4 for standard procedures for the completion of COC forms. - Indelible ink pen, permanent marker Indelible ink pens are used to complete required manual data entry of information on the FSDS and in the field logbook (pencil may not be used). Permanent markers may also be used to write sample numbers on the sample containers. - PPE As required by the HASP. - Land survey map or aerial photo Used to identify appropriate sampling locations. In some cases, sketches may be added to the map/photo to designate sampling and visual inspection locations and other site features. - Digital camera Used to document sampling locations and conditions. See Section B3.1.4 for standard procedures in photographic documentation. - GPS unit, measuring wheel, stakes Used to identify and mark sampling locations. See B2.2 for standard procedures in GPS documentation. - Zip-top bags Zip-top bags are used as sample containers for most types of environmental samples. Sample number labels will be affixed to the bags or the sample number will be hand-written in permanent marker on the bags. - Decontamination equipment Used to remove any residual asbestos contamination on reusable sampling equipment between the collection of samples. See Section B2.3 for standard decontamination procedures. In addition to the generic equipment list, the following equipment will be required for sampling activities as part of this program: - Commercial logging equipment: to be provided by Fousts, Inc. (see Appendix B) - Air sampling equipment: 25-mm diameter mixed cellulose ester filter cassette (0.8 μm pore), high and low flow rate battery-powered air sampling pumps, rotameter, tygon tubing, telescoping tri-pod stand, equipment to attach pumps to cab interior - Custody seals ## **B8.2 Laboratory Supplies** The laboratory manager is responsible for ensuring that all reagents and disposable equipment used in this project is free of asbestos contamination. This is demonstrated by the collection of laboratory blank samples (see Section B5). #### **B9.
NON-DIRECT MEASUREMENTS** There are no non-direct measurements that are anticipated for use in this project. #### **B10. DATA MANAGEMENT** The following subsections describe the field and analytical laboratory data management procedures and requirements for this investigation. These subsections also describe the project databases utilized to manage and report data from this investigation. Detailed information regarding data management procedures and requirements can be found in the *EPA Data Management Plan* for the Libby Asbestos Superfund Site (EPA 2012). #### **B10.1** Field Data Management Scribe is a software tool developed by ERT to assist in the process of managing environmental data. A Scribe project is a Microsoft Access database. Data for the Site are captured in various Scribe projects. Additional information regarding Scribe and the Libby Scribe project databases is discussed in Section B10.3. The field data manager utilizes a "local" field Scribe project database (i.e., LibbyCDM_Field.mdb) to maintain field sample information. The term "local" denotes that the database resides on the server or personal computer of the entity that is responsible for the creating/managing the database. It is the responsibility of the field data manager to ensure that all local field Scribe project databases are backed-up nightly to a local server. Field sample information from the FSDS is manually entered by a member of the field sample coordination staff using a series of standardized data entry forms (i.e., DE Tool). This tool is a Microsoft Access database that was originally developed by ESAT. The DE Tool is currently maintained by CDM Smith and resides on the local server in the Libby field office. This tool is used to prepare an electronic COC. Data in the DE Tool are imported into the local field Scribe project database by the field data manager. It is the responsibility of the field data manager to "publish" sample and COC information from the local field Scribe database to Scribe.NET on a daily basis. It is not until a database has been published via Scribe.NET that it becomes available to external users. ## B10.2 Analytical Laboratory Data Management The analytical laboratories utilize several standardized data reporting tools developed specifically for the Libby project to ensure consistency between laboratories in the presentation and submittal of analytical data. In general, a unique Libby-specific EDD has been developed for each analytical method and each sampling medium. Electronic copies of all current EDD templates are provided in the Libby Lab eRoom. Once the analytical laboratory has populated the EDD with results, the spreadsheet(s) are transmitted via email to the ESAT TEM Laboratory Manager, the ESAT project data manager, and the FTL (or their designate). (Other email recipients may also be specified by the ESAT LC). The ESAT project database manager utilizes a local analytical Scribe project database (i.e., LibbyLab2012.mdb) to maintain analytical results information. The EDDs are uploaded directly into the analytical Scribe project database. It is the responsibility of the ESAT project data manager to publish analytical results information from the local analytical Scribe database to Scribe.NET. #### **B10.3** Libby Project Database As noted above, Scribe is a software tool developed by ERT to assist in the process of managing environmental data. A Scribe project is a Microsoft Access database. Multiple Scribe projects can be stored and shared through Scribe.NET, which is a web-based portal that allows multiple data users controlled access to Scribe projects. Local Scribe projects are "published" to Scribe.NET by the entity responsible for managing the local Scribe project. External data users may "subscribe" to the published Scribe projects via Scribe.NET to access data. Subscription requests are managed by ERT. All data collected for this investigation will be maintained in Scribe. As discussed above, data will be are captured in various Scribe project databases, including a field Scribe project (i.e., LibbyCDM_Field.mdb) and an analytical results Scribe project (i.e., LibbyLab2012.mdb). #### **B10.4** Data Reporting Data users can access data for the Libby project through Scribe.NET. To access data, a data user must first download the Scribe application from the EPA ERT website⁷. The data user must then subscribe to each of the published Scribe projects for the Site using login and password information that are specific to each individual Scribe project. Scribe subscriptions for the Libby project are managed by ERT. Using the Scribe application, a data user may download a copy of any published Scribe project database to their local hard drive. It is the responsibility of the data user to regularly update their local copies of the Libby Scribe projects via Scribe.NET. The Scribe application provides several standard queries that can be used to summarize and view results within an individual Scribe project. However, these standard Scribe queries cannot be used to summarize results across multiple Scribe projects (e.g., it is not possible to query both the "LibbyCDM_Field" project and the "LibbyLab2012" project using these standard Scribe queries). If data users wish to summarize results across multiple published Scribe projects, there are two potential options. Data users may request the development of a "combined" project from ERT. This combined project compiles tables from multiple published Scribe projects into a single Scribe project. This allows data users to utilize the standard Scribe queries to summarize and view results. Alternatively, data users may download copies of multiple published Scribe project databases for the Site and utilize Microsoft Access to create user-defined queries to extract the desired data across Scribe projects. This requires that the data user is proficient in Microsoft Access and has an intimate knowledge of proper querying methods for asbestos data for the Site. It is the responsibility of the data users to perform a review of results generated by any data queries and standard reports to ensure that they are accurate, complete, and representative. If issues are identified by the data user, they should be reported to the EPA Region 8 data manager for resolution via email (Mosal.Jeffrey@epa.gov). It is the responsibility of the EPA Region 8 data manager to notify the appropriate entity (e.g., field, analytical laboratory) in order to rectify the issue. A follow-up email will be sent to the party reporting the issue to serve as confirmation that a resolution has been reached and any necessary changes have been made. _ ⁷ http://www.ertsupport.org/scribe_home.htm ## C Assessment and Oversight ## C1. ASSESSMENT AND RESPONSE ACTIONS Assessments and oversight reports to management are necessary to ensure that procedures are followed as required and that deviations from procedures are documented. These reports also serve to keep management current on field activities. ## C1.1 Assessments System assessments are qualitative reviews of different aspects of project work to check the use of appropriate QC measures and the general function of the QA system. Field and office system assessments will be performed under the direction of CDM Smith's QA Director, with support from the CDM Smith QA Manager. As noted previously, it is anticipated that a field surveillance will be performed during this sampling program. The EPA RPM and QATS contractor will be notified of any significant deficiencies. Additional field surveillances may be conducted if field processes are revised or other QA/QC procedures indicate potential deficiencies. System assessments/audits of the Troy SPF and analytical laboratories will be conducted by the QATS contractor, as coordinated by the EPA. ## C1.2 Response Actions Corrective response actions will be implemented on a case-by-case basis to address quality problems. Minor actions taken to immediately correct a quality problem will be documented via logbook and reported to the appropriate manager (e.g., the FTL or EPA LC). Major corrective actions (i.e., those that impact or have the potential to impact investigation objectives) will be approved by the EPA RPM and the appropriate manager prior to implementation. Major corrective actions will be documented via a ROM form. EPA project management will be notified when quality problems arise that cannot be corrected quickly through routine procedures. ## **C2. REPORTS TO MANAGEMENT** No regularly-scheduled written reports to management are planned as part of this project. However, QA reports will be provided to management for routine audits and whenever quality problems are encountered. Field staff will note any quality problems on FSDSs or in field logbooks. Further, the field and laboratory managers will inform the EPA RPM upon encountering quality issues that cannot be immediately corrected. ## D Data Validation and Usability #### D1. DATA REVIEW, VERIFICATION AND VALIDATION #### D1.1 Data Review Data review of project data typically occurs at the time of data reporting by the data users and includes cross-checking that sample IDs and sample dates have been reported correctly and that calculated analytical sensitivities or reported values are as expected. If discrepancies are found, the data user will contact the EPA database administrator, who will then notify the appropriate entity (field, preparation facility, or laboratory) in order to correct the issue. ## D1.2 Criteria for LA Measurement Acceptability Several factors are considered in determining the acceptability of LA measurements in samples analyzed by TEM. This includes the following: - 1. Evenness of filter loading. This is evaluated using a chi-square (CHISQ) test, as described in ISO 10312 Annex F2. If a filter fails the CHISQ test for evenness, the result may not be representative of the true
concentration in the sample, and the result should be given low confidence. - 2. Results of QC samples. This includes both field and laboratory QC samples, such as field and laboratory blank samples, as well as various types of recount and re-preparation analyses. If significant LA contamination is detected in field or laboratory blanks, all samples prepared on that day should be considered to be potentially biased high. If agreement between original analyses and re-preparation or recount analyses is poor, results for those samples should be given low confidence. #### D2. VERIFICATION AND VALIDATION METHODS #### D2.1 Data Verification Data verification includes checking that results have been transferred correctly from the original hand-written, hard copy field and analytical laboratory documentation to the project databases. The goal of data verification is to identify and correct data reporting errors. For analytical laboratories that utilize the Libby-specific EDD spreadsheets, data checking of reported analytical results begins with automatic QC checks that have been built into the spreadsheets. In addition to these automated checks, because these results will be reported to property owners, a detailed manual data verification effort will be performed for 10% of all samples and TEM analytical results collected as part of this sampling effort. This data verification process utilizes Site-specific SOPs (see **Appendix C**) developed to ensure TEM results and field sample information in the project databases is accurate and reliable: - EPA-LIBBY-09 SOP for TEM Data Review and Data Entry Verification This Site-specific SOP describes the steps for the verification of TEM analyses, based on a review of the laboratory benchsheets, and verification of the transfer of results from the benchsheets into the project database. - EPA-LIBBY-11 SOP for FSDS Data Review and Data Entry Verification This Site-specific SOP describes the steps for the verification of field sample information, based on a review of the FSDS form, and verification of the transfer of results from the FSDS forms into the project database. An FSDS review is performed on all samples selected for TEM or PLM data verification. The data verification review ensure that any data reporting issues are identified and rectified to limit any impact on overall data quality. If issues are identified during the data verification, the frequency of these checks may be increased as appropriate. Data verification will be performed by appropriate technical staff that is familiar with project-specific data reporting, analytical methods, and investigation requirements. The data verifier will prepare a data verification report (template reports are included in the SOPs) to summarize any issues identified and necessary corrections. A copy of this report will be provided to the appropriate project data manager, LC, and the EPA RPM. The data verifier will also transmit the results of the data verification, including any electronic files summarizing identified discrepancies, via email to the EPA Region 8 data manager (Mosal.Jeffrey@epa.gov) for resolution. A follow-up email will be sent to the data verifier to serve as confirmation that a resolution has been reached on any issues identified. It is the responsibility of the EPA Region 8 data manager to coordinate with the FTL and/or LC to resolve any project database corrections and address any recommended field or laboratory procedural changes from the data verifier. The EPA Region 8 data manager is also responsible for electronically tracking in the project database which data have been verified, who performed the verification, and when. #### D2.2 Data Validation Unlike data verification, where the goal is to identify and correct data reporting errors, the goal of data validation is to evaluate overall data quality and to assign data qualifiers, as appropriate, to alert data users to any potential data quality issues. Data validation will be performed by the QATS contractor (or their designate), with support from technical support staff that are familiar with project-specific data reporting, analytical methods, and investigation requirements. Data validation for asbestos should be performed in basic accordance with the draft *National Functional Guidelines (NFG) for Asbestos Data Review* (EPA 2011), and should include an assessment of the following: - Internal and external field audit/surveillance reports - Field ROMs - Field QC sample results - Internal and external laboratory audit reports - Laboratory contamination monitoring results - Laboratory ROMs - Internal laboratory QC analysis results - Inter-laboratory analysis results - Performance evaluation results - Instrument checks and calibration results - Data verification results (i.e., in the event that the verification effort identifies a larger data quality issue) A comprehensive data validation effort should be completed quarterly and results should be reported as a technical memorandum. This technical memorandum shall detail the validation procedures performed and provide a narrative on the quality assessment for each type of asbestos analysis, including the data qualifiers assigned, and the reason(s) for these qualifiers. The technical memorandum shall detail any deficiencies and required corrective actions. The QATS contractor will also prepare an annual addendum to the *Quality Assurance and Quality Control Summary Report for the Libby Asbestos Superfund Site* (CDM Smith 2011) to summarize results of the quarterly data validation efforts. This addendum should include a summary of any data qualifiers that are to be added to the project database to denote when results do not meet NFG guidelines and/or project-specific acceptance criteria. This addendum should also include recommendations for Site QA/QC program changes to address any data quality issues. The data validator will transmit the results for each data validation effort via email to the EPA Region 8 data manager (Mosal.Jeffrey@epa.gov). This email should include an electronic summary of the records that have been validated, the date they were validated, any recommended data qualifiers, and their associated reason codes. It is the responsibility of the EPA Region 8 data manager to ensure that the appropriate data qualifiers and reason codes recommended by the data validator are added to the project database, and to electronically track in the project database which data have been validated, who performed the validation, and when. In addition to performing quarterly data validation efforts, it is the responsibility of the QATS contractor (or their designate) to perform regular evaluations of all field blanks and laboratory blanks, to ensure that any potential contamination issues are quickly identified and resolved. If any blank contamination is noted, the QATS contractor should immediately contact the appropriate QAM to ensure that corrective actions are made. ## D3. RECONCILIATION WITH USER REQUIREMENTS Once all samples have been collected and analytical data has been generated, data will be evaluated to determine if study objectives were achieved. It is the responsibility of data users to perform a data usability assessment to ensure that DQOs have been met, and reported investigation results are adequate and appropriate for their intended use. This data usability assessment should utilize results of the data verification and data validation efforts to provide information on overall data quality specific to each investigation. The data usability assessment should evaluate results with regard to several data usability indicators, including precision, accuracy/ bias, representativeness, comparability, completeness, and whether specified analytic requirements (e.g., sensitivity) were achieved. **Table D-1** provides detailed information for how each of these indicators may be evaluated for the reported asbestos data. The data usability assessment results and conclusions should be included in any investigation-specific data summary reports. Non-attainment of project requirements may result in additional sample collection or field observations in order to achieve project needs. Table D-1: General Evaluation Methods for Assessing Asbestos Data Usability | Data Usability
Indicator | General Evaluation Method | | | | | | |-----------------------------|---|--|--|--|--|--| | | Sampling – Review results for co-located samples to provide information on variability arising from medium spatial heterogeneity and sampling and analysis methods. | | | | | | | Precision | <u>Analysis</u> – Review results for TEM laboratory duplicates, recounts, and repreparations to provide information on variability arising from analysis methods. Review results for inter-laboratory analyses to provide information on variability and potential bias between laboratories. | | | | | | | Accuracy/Bias | Calculate the background filter loading rate and use results to assign detect/non-detect in basic accordance with ASTM 6620-00. For air samples, determine the frequency of indirect preparation. | | | | | | | Representativeness | Review relevant field audit report findings and any field/laboratory ROMs for potential data quality issues. | | | | | | | Comparability | Compare the sample collection SOPs, preparation techniques, and analysis methods to previous investigations. | | | | | | | Completeness | Determine the percent of samples that were able to be successfully collected and analyzed (e.g., 99 of 100 samples, 99%). | | | | | | | Sensitivity | Determine the fraction of all analyses that stopped based on the area examined stopping rule (i.e., did not achieve
the target sensitivity). | | | | | | ASTM = American Society of Testing and Materials LA = Libby amphibole QATS = Quality Assurance Technical Support ROM = record of modification SOP = standard operating procedure TEM = transmission electron microscopy #### REFERENCES Amandus HE, Wheeler R. 1987. The Morbidity and Mortality of Vermiculite Miners and Millers Exposed to Tremolite-Actinolite: Part II. Mortality. *Am. J. Ind. Med.* 11:15-26. Berry D, et al. 2012. Comparison of Amphibole Air Concentrations Resulting from Direct and Indirect Filter Preparation and Transmission Electron Microscopy Analysis. *Journal of Occupational & Environmental Hygiene [in preparation]*. Bishop K, Ring S, Suchanek R, Gray D. 1978. Preparation Losses and Size Alterations for Fibrous Mineral Samples. *Scanning Electron Microsc.* I:207. Breysse PN. 1991. Electron Microscopic Analysis of Airborne Asbestos Fibers. *Crit. Rev. Analyt. Chem.* 22:201-227. CDM Smith. 2011. Libby Asbestos Superfund Site Operable Unit 3 Soil Disposal Plan, Libby Asbestos Project, Libby, Montana. EPA. 1991. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. Washington, DC. OSWER Directive 9355.0-30. __. 1992. United States Environmental Protection Agency, Office of Solid Waste and Emergency Response. Supplemental Guidance to RAGS: Calculating the Concentration Term. Publication 9285.7-081. _____. 2001. EPA Requirements for Quality Assurance Project Plans, QA/R-5. Final. March. ____. 2006. Guidance on Systematic Planning Using the Data Quality Objective Process, QA/G-4. February. 2007. Summary Report for Data Collected under the Supplemental Remedial Investigation Quality Assurance Project Plan Libby, Montana Superfund Site. U.S. Environmental Protection Agency, Region 8. October. _. 2008a. Performance Evaluation of Laboratory Methods for the Analysis of Asbestos in Soil at the Libby, Montana Superfund Site. Produced by Syracuse Research Corporation for EPA, Region 8. Draft - October 7, 2008. _. 2008b. Characteristic EDS Spectra for Libby-Type Amphiboles. Produced by Syracuse Research Corporation for EPA, Region 8. Final - March 18, 2008. | 2008c. Framework for Investigating Asbestos-Contaminated Sites. Report prepared by | |---| | the Asbestos Committee of the Technical Review Workgroup of the Office of Solid Waste and | | Emergency Response, U.S. Environmental Protection Agency. OSWER Directive #9200.0-68. | | | | 2010a. Activity-Based Sampling Summary Report, Operable Unit 4, Libby, Montana, | | Superfund Site. U.S. Environmental Protection Agency, Region 8. June 2. | | | | 2010b. ProUCL Version 4.00.05 Technical Guide (Draft). U.S. Environmental Protection | | Agency, Office of Research and Development. EPA/600/R-07/041. May 2010. | | http://www.epa.gov/esd/tsc/ProUCL_v4.00.05/ProUCL_v4.00.05_tech_guide(draft).pdf | | | | 2011. Remedial Investigation for Operable Unit 3, Libby Asbestos Superfund Site. Phase | | IV Sampling And Analysis Plan Part A - Data to Support Human Health Risk Assessment. | | Addendum: Opportunistic Sampling During Authentic Wildfires. Prepared for, and with | | oversight by U.S. Environmental Protection Agency, Region 8, Denver, CO, by CDM, Denver, | | CO and SRC, Inc, Denver, CO. August 20, 2011 | | | | HEI-AR. 1991. Asbestos in Public and Commercial Buildings: A Literature Review and | | | Synthesis of Current Knowledge. Health Effects Institute – Asbestos Research. Cambridge, Massachusetts. International Organization for Standardization (ISO). 1995. Ambient Air – Determination of asbestos fibers – Direct-transfer transmission electron microscopy method. ISO 10312:1995(E). Meeker GP, Bern AM, Brownfield IK, Lowers HA, Sutley SJ, Hoeffen TM, Vance JS. 2003. The Composition and Morphology of Amphiboles from the Rainy Creek Complex, Near Libby, Montana. *American Mineralogist* 88:1955-1969. McDonald JC, Harris J, Armstrong B. 2004. Mortality in a cohort of vermiculite miners exposed to fibrous Amphibole in Libby, Montana. *Occup. Environ. Med.* 61:363-366. McDonald JC, McDonald AD, Armstrong B, Sebastien P. 1986. Cohort study of mortality of vermiculite miners exposed to tremolite. *Brit. J. Ind. Med.* 43:436-444. Nelson W. 1982. Applied Life Data Analysis. John Wiley & Sons, New York. pp 438-446. OSHA. 2002. OSHA 3096: Asbestos Standard for the Construction Industry (Revised). U.S. Department of Labor, Occupational Safety and Health Administration. http://www.osha.gov/Publications/OSHA3096/3096.html Peipins LA, Lewin M, Campolucci S, Lybarger JA, Miller A, Middleton D, et al. 2003. Radiographic abnormalities and exposure to asbestos-contaminated vermiculite in the community of Libby, Montana, USA. *Environ. Health Perspect.* 111:1753-1759. Rohs AM, Lockey JE, Dunning KK, Shulka R, Fan H, Hilbert T, Borton E, Wiot J, Meyer C, Shipley RT, LeMasters GK, Kapol V. 2007. Low level Fiber Induced Radiographic Changes Caused by Libby Vermiculite: A 25 year Follow-up Study. *Am J Respiratory and Critical Care Medicine*. Published online December 6, 2007 as doi:10.1164/rccm.200706-814OC. Sahle W, Laszlo I. 1996. Airborne Inorganic Fibre Monitoring by Transmission Electron Microscope (TEM): Comparison of Direct and Indirect Sample Transfer Methods. *Ann. Occup. Hyg.* 40:29-44. Sullivan PA. 2007. Vermiculite, Respiratory Disease and Asbestos Exposure in Libby, Montana: Update of a Cohort Mortality Study. *Environmental Health Perspectives* doi:10.1289/ehp.9481 Available online at http://dx.doi.org. Tetra Tech. 2011. Libby Amphibole (LA) Asbestos in Tree Bark and Duff in the Upper Flower Creek Timber Sale Site, Libby, Montana. Prepared for the Montana Department of Environmental Quality and the Montana Department of Natural Resources and Conservation. Draft – December. This page intentionally left blank to facilitate double-sided printing #### APPENDIX A # DATA QUALITY OBJECTIVES FOR THE OPPORTUNISTIC COMMERICAL LOGGING INVESTIGATION Data quality objectives (DQOs) are statements that define the type, quality, quantity, purpose, and use of data to be collected. The following sections implement the seven-step DQO process (EPA 2006) for the opportunistic commercial logging investigation. ## **Step 1: State the Problem** Available data indicate that detectable levels of Libby amphibole (LA) in tree bark and duff are present within an area of Operable Unit 4 (OU4) referred to as the Upper Flower Creek timber sale site (Tetra Tech 2011). As stated in the *Framework for Investigating Asbestos-Contaminated Superfund Sites* (EPA 2008), asbestos fibers in source materials are typically not inherently hazardous, unless the asbestos is released from the source material into air where it can be inhaled. If inhaled, asbestos fibers can increase the risk of developing lung cancer, mesothelioma, pleural fibrosis, and asbestosis. Thus, the evaluation of risks to humans from exposure to asbestos is most reliably achieved by the collection of data on the level of asbestos in breathing zone air during disturbance of asbestos source materials, referred to as activity-based sampling (ABS) (EPA 2008). While there have been several ABS studies conducted at OU4 to assess potential exposures under a variety of exposure conditions, at present, there are no ABS data to evaluate the exposures of commercial logging workers that harvest trees in OU4. Therefore, it is currently unknown whether LA concentrations in tree bark and duff in OU4 present a potential risk to commercial logging workers. #### Step 2: Identify the Goal of the Study In early November 2012, Stoltze will be harvesting timber from Unit 16 of the Upper Flower Timber Sale site located adjacent to the municipal golf course in Libby. Stoltze has offered to allow EPA to collect air monitoring data as the harvest activities progress to provide information on potential LA concentrations in air during commercial logging operations in OU4. The goal of this study is to collect air monitoring data that will provide exposure information during commercial logging operations in OU4. The EPA will use these data in an evaluation of potential exposures associated with commercial logging operations in and around OU4. These data will help inform future sampling needs, as well as best management practices and institutional controls, associated with timber harvesting activities. ## **Step 3: Identify Information Inputs** The information needed to characterize exposure of commercial logging workers to LA consist of reliable and representative measurements of LA in air during the harvesting of trees in OU4. Such measurements are obtained by drawing a known volume of air through a filter during various activities that disturb LA source materials and measuring the number of LA fibers that become deposited on the filter surface. The following sections discuss the types of logging activities that should be evaluated, the types of ABS air samples that should be collected, and the analytical methods that should be used to analyze these ABS air samples. #### Disturbance Activities During commercial logging operations, workers may perform a variety of different activities that have the potential to disturb source materials that could contain LA (e.g., tree bark, duff, soil). Based on a review of the logging narrative of anticipated logging activities for the Upper Flower Creek Unit 16 area provided by Stoltze, air monitoring efforts should include felling, skidding, processing, debarking, and loading activities. If it is not possible to assess all these types of logging activities, focus should be placed on those activities that generate high levels of airborne particulates (e.g., debarking). ## Type of Air Sample Experience at Libby and at other sites has demonstrated that samples that collect air in the immediate breathing
zone of the person performing an activity tend to have higher concentrations of LA than air samples collected by a stationary monitor located near the activity (EPA 2007), especially if the person is engaged in an activity that disturbs an asbestos source material. However, because EPA contractors are not performing these logging activities (a commercial logging subcontractor to Stoltze will be performing the timber harvesting and air samples are being collected opportunistically), it is not appropriate for the logging workers to wear personal air monitoring equipment. Thus, air monitoring equipment should be placed within the cab of the logging machinery to monitor exposures to machinery operators. Monitors should also be placed near the logging area to measure air concentrations during the activities to monitor potential exposures to logging oversight staff and bystanders. Based on a review of the logging narrative provided by Stoltze (see Appendix B), workers do not need to exit the cab to perform logging activities; thus, there should not be a need to attach any air monitoring equipment on the outside of the logging machinery. #### **Analysis Method** Air samples should be analyzed for asbestos using transmission electron microscopy (TEM). For ABS air samples, because asbestos toxicity depends on the particle size and mineral type, results should include the size attributes (length, width) of each asbestos structure observed, along with the mineral classification (LA, other amphibole, chrysotile). In addition, because it is possible that there could be various sources of LA present, information on the sodium and potassium content of each LA structure observed, as determined by energy dispersive spectroscopy (EDS), should also be recorded. This requirement is based on the observation of Meeker et al. (2003) that most particles from the Libby ore body contain detectable levels of both sodium and potassium, whereas other potential sources of LA may not. ## Step 4: Define the Bounds of the Study Because this is an opportunistic sampling effort, EPA has little input as to the location and timing of this logging effort. This commercial logging effort will be conducted within the Upper Flower Creek Timber Sale area at a unit that has already been identified by Stoltze for timber harvesting. The harvest activity is expected to occur in early November 2012. ## Step 5: Define the Analytical Approach The air concentration results from this study will be used to calculate an exposure point concentration (EPC). The EPC will be calculated as the average measured air concentration. The EPC will be combined with assumptions about exposure frequency and duration and toxicity factors for LA to estimate potential risks that can be used by EPA, in consultation with MDEQ, to inform future sampling needs, as well as best management practices and institutional controls, associated with timber harvesting activities. The EPA has recently proposed LA-specific toxicity values for use in estimating cancer risks and non-cancer hazard quotients (HQs) from exposures to LA in air. The lifetime inhalation unit risk (IUR) value is 0.17 LA phase contrast microscopy (PCM)⁸ (structures per cubic centimeter [s/cc])⁻¹ and the lifetime reference concentration (RfC) value is 0.00002 LA PCM s/cc (EPA 2011). The EPA is currently reviewing these values. Basic methods for estimating human health risk from LA in air are provided below. um, and an aspect ratio $\geq 3:1$. $^{^8}$ Calculations of human exposure and risk from asbestos in air are expressed in terms of PCM s/cc. When analysis is performed by TEM, structures that satisfy PCM counting rules are referred to as PCM-equivalent (PCME) structures. The PCM counting rules include structures with a length > 5 microns (μ m), a width greater than or equal to (\geq) 0.25 ## **Estimation of Cancer Risk** The basic equation for estimating cancer risk from LA using the LA-specific IUR value is as follows: $$Risk = EPC * TWF_c * IUR_{LA}$$ where: Risk = Lifetime excess risk of developing cancer (lung cancer or mesothelioma) as a consequence of site-related LA exposure. EPC = Exposure point concentration of LA in air (PCM or PCM-equivalent [PCME] s/cc). The EPC is an estimate of the long-term average concentration of LA in inhaled air for the specific activity being assessed. TWF_c = Time-weighting factor for cancer. The value of the TWF term ranges from zero to one, and describes the average fraction of a lifetime during which exposure occurs from the specific activity being assessed. $$TWF_c = ET/24 * EF/365 * ED/70$$ where: ET = Average exposure time (hrs/day) EF = Average exposure frequency (days/year) ED = Exposure duration (years) IUR_{LA}= LA-specific lifetime inhalation unit risk (LA PCM s/cc)-1 #### Estimation of Non-Cancer Hazard Quotient The basic equation for characterizing non-cancer risk from LA using the LA-specific RfC value is as follows: $$HQ = EPC * TWF_{nc} / RfC_{LA}$$ where: HQ = Hazard quotient for non-cancer effects from site-related LA exposure EPC = Exposure point concentration of LA in air (PCM or PCME s/cc) ``` TWF_{nc} = Time-weighting factor for non-cancer. TWF_{nc} = ET/24 * EF/365 * ED/60 where: ET = Average \ exposure \ time \ (hrs/day) EF = Average \ exposure \ frequency \ (days/year) ED = Exposure \ duration \ (years) RFC_{LA} = LA-specific \ lifetime \ reference \ concentration \ (LA \ PCM \ s/cc) ``` #### **Decision Rule** The EPA guidance provided in OSWER Directive #9355.0-30, "Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions" (EPA 1991) indicates that if the cumulative cancer risk to an individual based on reasonable maximum exposure (RME) is less than 1E-04 and the non-cancer HQ is less than 1, then action is generally not warranted unless there are adverse environmental impacts. The guidance also states that a risk manager may decide that risks below 1E-04 are unacceptable and that action is warranted in cases where there are uncertainties in the estimated risks. #### **Step 6: Specify Performance Criteria** In making decisions about potential exposures to humans in OU4, two types of decision errors are possible: - A *false negative decision error* would occur if EPA decides that exposure to LA is not of health concern, when in fact it is of concern. - A *false positive decision error* would occur if EPA decides that exposure to LA is above a level of concern, when in fact it is not. The EPA is most concerned about guarding against the occurrence of false negative decision errors, since an error of this type may leave humans exposed to unacceptable levels of LA. To minimize chances of underestimating the true amount of exposure and risk, the EPA generally recommends that risk calculations be based on the 95 percent upper confidence limit (95UCL) of the sample mean (EPA 1992). Use of the 95UCL in risk calculations limits the probability of a false negative decision error to no more than 5 percent. To support this approach, the EPA has developed a software application (ProUCL) to assist with the calculation of 95UCL values (EPA 2010b). However, equations and functions in ProUCL are not designed for asbestos datasets and application of ProUCL to asbestos datasets is not recommended (EPA 2008). The EPA is presently working to develop a new software application that will be appropriate for use with asbestos datasets, but the application is not yet available for use. Because the 95UCL cannot presently be calculated with confidence, risk calculations will be based on the sample mean only, as recommended by EPA (2008). This means that risk estimates may be either higher or lower than true values, and this uncertainty will be considered when making risk management decisions. The EPA is also concerned with the probability of making false positive decision errors. Although this type of decision error does not result in unacceptable human exposure, it may result in unnecessary expenditure of resources. The risk of false positive decision errors can be minimized by increasing the number of samples. The number of samples needed depends on the magnitude of between-sample variability and the proximity of EPC to the decision threshold. If between-sample variability is low, or if the EPC is not near a decision threshold, then the number of samples needed is relatively low. However, if between-sample variability is high and the EPC is relatively near a decision threshold, then the number of samples needed is usually higher. Because it is not possible at present to quantify the uncertainty in the mean of an asbestos dataset as a function of the number of samples, it is not possible to calculate a minimum number of samples required to minimize the risk of false positive decision errors. In addition, due to the opportunistic nature of this sampling program, the number of samples that can collected cannot be controlled and will depend upon the duration of the logging activities. To the extent feasible, this study should maximize the number of samples collected such that there are multiple air measurements across multiple activities and multiple days. #### Step 7: Optimizing the Study Design A detailed study design for the collection of air samples as part of this opportunistic commercial logging study is provided in Section B1 of this SAP/QAPP. Key features of this study design are discussed below. #### Optimizing the Sample Duration and Pump Flow Rates Two key variables that may be adjusted during collection of air samples are sampling duration and pump flow rate. The product of these two variables determines the amount of air drawn through the filter, which in turn is an important factor in the analytical cost and feasibility of achieving the target analytical sensitivity (TAS). In general, longer sampling times are preferred over shorter sampling times because a) longer time intervals are more likely to yield representative measures of the
average concentration (as opposed to short-term fluctuations), and b) longer collection times are associated with higher volumes, which makes it easier to achieve the TAS. Likewise, higher flow rates are generally preferred over lower flow rates because high flow results in high volumes drawn through the filter over shorter sampling times. However, there is a limit to how much air can be drawn through a filter. In cases where the air being sampled contains a significant level of airborne particulates (e.g., dust, sawdust), it is possible that particulate loading on the filter could influence the ability to maintain the optimal flow rate. To minimize this possibility, pump flow rates should be checked regularly throughout the collection period and filter cassettes should be changed if flow rates become impacted. While particulate loading on the filter may not impact pump flow rates, it is possible that the filter will become so overloaded with airborne particulates that the filter cannot be examined directly by the TEM analyst. In this event, the filter must undergo an "indirect" preparation in which the original filter is ashed and the resulting residue is suspended in water and redeposited on a "secondary" filter, such that the secondary filter is not overloaded. In some cases, indirect preparation of air samples may alter (usually increase) the observed concentration of asbestos in air samples. The EPA Region 8 has reviewed published studies on this topic (see HEI-AR 1991 and Breysse 1991 for reviews), and interprets the data to indicate that, in contrast to what is usually observed in the case of chrysotile asbestos, effects of indirect preparation of samples containing amphibole asbestos are generally small (e.g., Bishop et al. 1978, Sahle and Laszlo 1996, Berry et al. 2012). However, to reduce the frequency of indirect preparations, it is desirable to collect samples using two different sampling pumps – one that operates at a high flow rate and one that operates at a low flow rate. Whenever possible, the filter from the high flow pump should be selected for analysis. In cases where the high flow filter is deemed to be overloaded (i.e., the particulate loading on the filter is > 25%), then the low flow filter should be analyzed. If both filters are deemed to be overloaded, the high flow filter should be prepared indirectly following ashing. #### Analytical Requirements for ABS Air Samples In general, three alternative stopping rules are specified for TEM analyses to ensure resulting data are adequate: - 1. The TAS to be achieved - 2. A maximum number of structures to be counted - 3. A maximum area of filter to be examined The basis for each of these values for this study is presented below. ## Target Analytical Sensitivity The level of analytical sensitivity needed to ensure that analysis of air samples will be adequate is derived by finding the concentration of LA in air that might be of potential concern, and then ensuring that if an air sample were encountered that had a true concentration equal to that level of concern, it would be quantified with reasonable accuracy. This process is implemented below: Step 1. Calculation of Risk-Based Concentrations **Cancer.** The basic equation for calculating the risk-based concentration (RBC) for cancer is: For cancer, the maximum acceptable risk is a risk management decision. For the purposes of calculating an adequate TAS, a value of 1E-05 is assumed. The exposure parameters needed to calculate TWF are not known with certainty, so the following RME exposure parameters were selected based on information provided by local commercial logging workers on potential exposures for workers in the Libby Valley: | Exposure Parameter | RME Value | |----------------------------------|---------------| | Exposure Time | 10 hours/day | | Exposure Frequency | 160 days/year | | Exposure Duration (Libby Valley) | 12 years | For the purposes of deriving the TAS, it was assumed that 50% of the time spent logging within the Libby Valley would be within OU4 (i.e., the calculated TWF was adjusted by a factor of 0.5). Based on these exposure parameters, the TWF_c is 0.016 (10/24 * 160/365 * 12/70 * 0.5 = 0.016). Thus, the RBC for cancer is 0.0038 LA PCME s/cc. **Non-Cancer.** The basic equation for calculating the RBC for non-cancer effects is: $$RBC(non-cancer) = (Maximum Acceptable HQ * RfC_{LA}) / TWF_{nc}$$ For non-cancer, the maximum acceptable HQ is 1. Based on the exposure parameters presented above, the TWF_{nc} is 0.018 (10/24 * 160/365 * 12/60 * 0.5 = 0.018). Thus, the RBC for non-cancer is 0.0011 LA PCME s/cc. Because the non-cancer RBC is lower than the cancer RBC, the non-cancer RBC is used to derive the TAS. The TAS is determined by dividing the RBC by the target number of structures to be observed during the analysis of a sample with a true concentration equal to the RBC: The target count is determined by specifying a minimum detection frequency required during the analysis of samples at the RBC. This probability of detection is given by: ``` Probability of detection = 1 - Poisson(0, Target Count) ``` Assuming a minimum detection frequency of 95 percent, the target count is 3 structures. Based on this, the TAS is: TAS = $$(0.0011 \text{ s/cc}) / (3 \text{ s}) = 0.00037 \text{ cc}^{-1}$$ #### Maximum Number of LA Structures Ideally, all samples would be examined by TEM until the TAS is achieved. However, for filters that have high asbestos loading, reliable estimates of concentration may be achieved before achieving the TAS. This is because the uncertainty around a TEM estimate of asbestos concentration in a sample is a function of the number of structures observed during the analysis. The 95% confidence interval (CI) around a count of N structures is computed as follows: ``` Lower bound (2.5%) = \frac{1}{2} · CHIINV(0.975, 2 · N_{observed} + 1) Upper bound (97.5%) = \frac{1}{2} · CHIINV(0.025, 2 · N_{observed} + 1) ``` As N_{obs} increases, the absolute width of the CI range increases, but the relative uncertainty (expressed as the CI range divided by N_{obs}) decreases. This concept is illustrated in the figure below. ## RELATIONSHIP BETWEEN THE NUMBER OF STRUCTURES OBSERVED AND RELATIVE UNCERTAINTY CI = confidence interval The goal is to specify a target N such that the resulting Poisson variability is not a substantial factor in the evaluation of method precision. As shown in the figure, above about 25 structures, there is little change in the relative uncertainty. Therefore, the count-based stopping rule for TEM should utilize a maximum structure count of 25 structures. Because the ABS air concentrations will be used to estimate potential risks, which are derived based on the total number of structures that meet PCM counting rules, the maximum structure count is applicable to PCME LA structures (not total LA structures). #### Maximum Area to be Examined The number of grid openings that must be examined (GOx) to achieve the target analytical sensitivity is calculated as: $$GOx = EFA / (TAS \cdot Ago \cdot V \cdot 1000 \cdot f)$$ where: EFA = Effective filter area (assumed to be 385 mm²) TAS = Target analytical sensitivity (cc)-1 Ago = Grid opening area (assumed to be 0.01 mm²) V = Sample air volume (L) 1000 = L/cc (conversion factor in L/cc) f = Indirect preparation dilution factor (assumed to be 1 for direct preparation) For example, an air sample with a total volume of 960 liters (4-hour sample duration x 60 minutes/hour x 4 liters/minute flow rate) would need to examine about 90 grid openings to achieve the TAS, if the filter is prepared directly. If an indirect preparation is required, the number of grid openings that would need to be examined is inversely proportional to the dilution needed (i.e., an f-factor of 0.5 will increase the number of grid openings by a factor of 2). If the f-factor is very small, it is possible that the number of grid openings that would need to be examined to achieve the target analytical sensitivity may be cost or time prohibitive. In order to limit the maximum effort expended on any one sample, a maximum area examined of 10 mm² is identified for this project. Assuming that each grid opening has an area of about 0.01 mm², this would correspond to about 1,000 grid openings. ## **Summary of TEM Stopping Rules** The TEM stopping rules for this study should be as follows: - 1. Examine a minimum of two grid openings from each of two grids. - 2. Continue examining grid openings until one of the following is achieved: - a. The TAS $(0.00037 \text{ cc}^{-1})$ is achieved. - b. 25 PCME LA structures have been observed. - c. A total filter area of 10 mm² has been examined. When one of these criteria has been satisfied, complete the examination of the final grid opening and stop. #### **REFERENCES** Berry D, et al. 2012. Comparison of Amphibole Air Concentrations Resulting from Direct and Indirect Filter Preparation and Transmission Electron Microscopy Analysis. [Manuscript in preparation] Bishop K, Ring S, Suchanek R, Gray D. 1978. Preparation Losses and Size Alterations for Fibrous Mineral Samples. *Scanning Electron Microsc.* I:207. Breysse PN. 1991. Electron Microscopic Analysis of Airborne Asbestos Fibers. *Crit. Rev. Analyt. Chem.* 22:201-227. EPA. 1991. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. Washington, DC. OSWER Directive 9355.0-30. | 1992. United States Environmental Protection Agency, Office of Solid Waste and Emergency Response. Supplemental Guidance to RAGS: Calculating the Concentration Term. Publication 9285.7-081. |
---| | 2006. Guidance on Systematic Planning Using the Data Quality Objective Process, QA/G-4. February. | | 2007. Summary Report for Data Collected under the Supplemental Remedial Investigation Quality Assurance Project Plan Libby, Montana Superfund Site. U.S. Environmental Protection Agency, Region 8. October. | | 2008. Framework for Investigating Asbestos-Contaminated Sites. Report prepared by the Asbestos Committee of the Technical Review Workgroup of the Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency. OSWER Directive #9200.0-68. | | 2010a. Activity-Based Sampling Summary Report, Operable Unit 4, Libby, Montana, Superfund Site. U.S. Environmental Protection Agency, Region 8. June 2. | | 2010b. ProUCL Version 4.00.05 Technical Guide (Draft). U.S. Environmental Protection Agency, Office of Research and Development. EPA/600/R-07/041. May 2010.
http://www.epa.gov/esd/tsc/ProUCL_v4.00.05/ProUCL_v4.00.05_tech_guide(draft).pdf | | 2011. Remedial Investigation for Operable Unit 3, Libby Asbestos Superfund Site. Phase IV Sampling And Analysis Plan Part A – Data to Support Human Health Risk Assessment. Addendum: Opportunistic Sampling During Authentic Wildfires. Prepared for, and with oversight by U.S. Environmental Protection Agency, Region 8, Denver, CO, by CDM, Denver, CO and SRC, Inc, Denver, CO. August 20, 2011 | | HEI-AR. 1991. Asbestos in Public and Commercial Buildings: A Literature Review and Synthesis of Current Knowledge. Health Effects Institute – Asbestos Research. Cambridge, Massachusetts. | | Meeker GP, Bern AM, Brownfield IK, Lowers HA, Sutley SJ, Hoeffen TM, Vance JS. 2003. The Composition and Morphology of Amphiboles from the Rainy Creek Complex, Near Libby, Montana. <i>American Mineralogist</i> 88:1955-1969. | | Sahle W, Laszlo I. 1996. Airborne Inorganic Fibre Monitoring by Transmission Electron Microscope (TEM): Comparison of Direct and Indirect Sample Transfer Methods. <i>Ann. Occup. Hyg.</i> 40:29-44. | # APPENDIX B COMMERICAL LOGGING NARRATIVE (as provided by Stoltze) Unit 16 of the Upper Flower Timber Sale Contract between Stoltze and the Montana Department of Natural Resources Conservation (MDNRC) is located adjacent to the municipal golf course in Libby. The unit is roughly 51 acres in size and timber designated for removal is approximately 2,350 tons. Stoltze and MDNRC are proposing to harvest the entire unit and allow EPA to collect data as the harvest activities progress. Timber harvest operations are proposed to start the first full week of November, 2012. A contractor working for Stoltze (Fousts, Inc.) will utilize a mechanical harvesting system to harvest, process, debark and transport designated timber. This "harvest system" will incorporate five basic operations as follows: - Felling of timber - Skidding of timber - Processing of timber - Debarking of timber - Loading and transportation of timber Following is a detailed description of the various methods to accomplish the five operations. **Felling of timber:** Felling of timber is simply the process of severing the tree from the stump and putting it on the ground. Mechanical Falling: This method utilizes heavy equipment, track mounted, equipped with a specialized falling head designed to cut the tree. These machines are commonly referred to as "feller bunchers". The machine cuts the tree, controls the direction of fall, accumulates and transports multiple or single trees a short distance from the stump to the skid trail. In this operation, the feller buncher configuration is a tracked machine with self-leveling cab equipped with a High Speed Rotating Disc Saw head. Operator is in an enclosed cab with guarding to protect from falling debris, lexan windows, heat and air conditioning. Personal protective equipment (PPE) while operating the machine consists of hearing protection (usually plugs) adequate boots and clothing for the weather conditions and hard hat when outside of the machine. ➤ <u>Skidding of timber:</u> Skidding is the process of moving trees or logs from the stump to a centralized location for further processing or transportation. Skidding can be either whole trees or processed logs. Skidders transport logs or trees by dragging them along the ground. This operation will utilize two grapple skidders to move trees from stump to landing. Grapple Skidders utilize a large mechanical grapple to grab the tree/log or bunch of trees/logs. The grapple generally elevates the leading end of the trees/logs off the ground, dragging the trailing end along the ground while skidding. The operator is not required to leave the machine or physically touch the logs in the operation of the grapple skidder. Cabs on this operation will be fully enclosed with pressurized heat/air conditioning. Operator PPE generally consists of hearing protection and appropriate boots and clothing for the weather conditions. ➤ <u>Processing of timber:</u> Processing is the act of cutting the limbs and top from the tree and cutting the tree into desired lengths. This operation will utilize mechanical processing: This operation will utilize a dangle head processor, which is an excavator carrier with a specialized head to strip limbs and cut logs to length. Operators are in enclosed cabs equipped with heat and air conditioning. PPE while operating the machine consists of hearing protection (usually plugs) adequate boots and clothing for the weather conditions and hard hat when outside of the machine. Debarking of timber: We will debark the logs in the woods using a portable chain flail debarker. This machine is fed by a log loader and utilizes spinning chains to remove bark from the logs. The logs are fed in one side of the machine and come out the other without the bark. The bark is pushed away from the machine using either a skidder or like machine. The debarker is limited to a maximum log diameter of 23 inches. Logs greater than 23 inches will not fit in the machine. - ➤ <u>Transporting of Timber:</u> Transporting of timber is simply moving the processed logs from the in woods location to the manufacturing facility. It generally encompasses three basic steps, loading, hauling and unloading. - Loading: Loading involves the use of a hydraulic boom equipped with a grapple. "Straight Trucks" have no loader and rely on another machine on the landing to load logs. Log loaders on the landing will be excavator type machines with grapples. The loader operator is in an enclosed cab. PPE includes hearing protection and - appropriate clothing. The truck driver is responsible for binding the load and marking with appropriate ticket and paint. - Hauling: Logs are transported on a variety of road types. Most all loads are uncovered and only bound by wrappers. Standard Montana Department of Transportation and traffic rules and laws apply. - <u>Unloading:</u> Unloading is done at the manufacturing site or re-load yard. Either wheel loaders, cranes or hydraulic boom type loaders are used. The driver is exposed to the load while removing the wrappers. The unloading machine operator is in a cab, usually enclosed. PPE consists of hearing protection, hard hat and appropriate clothing. #### **Process:** The proposal for Unit 16 is to log the entire 51 acres. This will take approximately 2 weeks. Felling, skidding, processing, debarking, loading and transporting will take place concurrently. Generally, there will be 5 personnel on site operating the various pieces of machinery. In addition to operation of machines, daily maintenance and fueling will take place on each piece of equipment, which requires operators to be outside of the cab. Occasionally, additional personnel may be on site for maintenance, repair, or supervisory activities. ## **APPENDIX C** ## STANDARD OPERATING PROCEDURES** | SOP ID | SOP Description | | | | | |------------------------------|--|--|--|--|--| | Field Procedures | | | | | | | EPA-LIBBY-2012-01 | Field Logbook Content and Control | | | | | | EPA-LIBBY-2012-02 | Photographic Documentation of Field Activities | | | | | | EPA-LIBBY-2012-04 | Field Equipment Decontamination | | | | | | EPA-LIBBY-2012-05 | Handling Investigation-Derived Waste | | | | | | EPA-LIBBY-2012-06 | Sample Custody | | | | | | EPA-LIBBY-2012-07 | Packaging and Shipping of Environmental Samples | | | | | | EPA-LIBBY-2012-10 | Sampling of Asbestos Fibers in Air | | | | | | CDM-LIBBY-09 | GPS Coordinate Collection and Handling | | | | | | Laboratory Procedures | | | | | | | EPA-LIBBY-08 | Indirect Preparation of Air and Dust Samples for TEM | | | | | | EI A-LIDD1-00 | Analysis | | | | | | Data Verification Procedures | | | | | | | EPA-LIBBY-09 | SOP for TEM Data Review and Data Entry Verification | | | | | | EPA-LIBBY-11 | SOP for FSDS Data Review and Data Entry Verification | | | | | ^{**}The most recent versions of all field SOPs are provided electronically in the Libby Field eRoom (https://team.cdm.com/eRoom/R8 - RAC/Libby). The most recent version of all laboratory and data verification SOPs are provided electronically in the Libby Lab eRoom (https://team.cdm.com/eRoom/mt/LibbyLab). This page intentionally left blank to facilitate double-sided printing ## **APPENDIX D** ## ANALYTICAL REQUIREMENTS SUMMARY SHEET [OPPLOG-1112] [see the Libby Lab eRoom for the most recent version of this summary sheet] This page intentionally left blank to facilitate double-sided printing Requirements Summary: #OPPLOG-1112
Requirements Revision #: 0 Effective Date: October 31, 2012 ## SAP/QAPP REQUIREMENTS SUMMARY #<u>OPPLOG-1112</u> SUMMARY OF PREPARATION AND ANALYTICAL REQUIREMENTS FOR ASBESTOS **Title:** <u>Libby Asbestos Site, Sampling and Analysis Plan/Quality Assurance Project Plan, Opportunistic Commercial Logging Sampling – Upper Flower Creek Timber Sale Unit 16</u> **SAP Date (Revision):** November 2012 (Revision 0) EPA Technical Advisor: Elizabeth Fagen (303-312-6095, Fagen. Elizabeth@epa.gov) (contact to advise on DQOs of SAP related to preparation/analytical requirements) **Sampling Program Overview:** This program will conduct opportunistic air sampling during authentic commercial logging operations conducted within OU4. As part of this program, air monitoring samples will be collected and analyzed by TEM-ISO 10312. #### **Estimated number and timing of field samples:** >> Air (early November): ~57 samples (estimate; actual number will depend upon the logging duration) Sample ID Prefix: CL-5 _ _ _ **TEM Preparation and Analytical Requirements for Air Field Samples:** | | Medium,
Sample Type | | Preparati | on Details | | | Anal | Annliaghla Laboratory | | |----------------|-------------------------------------|---------------------|------------------------|----------------------------|--------------------|--|---|--|--| | Medium
Code | | Investi-
gative? | Indirect F With Ashing | Prep? [a,b] Without Ashing | Filter
Archive? | Method | Recording
Rules [c] | Analytical Sensitivity/Prioritized
Stopping Rules | Applicable Laboratory Modifications (current version of) | | A | Air (Personal
and
Stationary) | Yes | Yes | No | Yes | TEM –
Modified
ISO
10312,
Annex E
(Low
Mag,
5,000X) | PCME asbestos; L: > 5 μ m W: \geq 0.25 μ m AR: \geq 3:1 | Count a minimum of 2 grid openings in 2 grids, then continue counting until one is achieved: i) sensitivity of 0.00037 cc ⁻¹ is achieved ii) 25 PCME LA structures are recorded iii) 10 mm ² of filter has been examined | LB-000016, LB-000029,
LB-000055, LB-
00066D, LB-000067,
LB-000085 | [[]a] The high volume filter will be analyzed in preference to the low volume filter if direct preparation is possible. If the high volume filter is overloaded, use the low volume filter. If the low volume filter is overloaded, prepare the high volume filter indirectly (with ashing), calculate number of grid openings to analyze to reach target analytical sensitivity, and contact EPA project managers or their designate before proceeding with analysis. [[]b] See most current version of SOP EPA-LIBBY-08 for indirect preparation details. [[]c] If observed, chrysotile structures should be recorded using the same procedures as amphibole asbestos. Requirements Summary: #OPPLOG-1112 Requirements Revision #: 0 Effective Date: October 31, 2012 TEM Preparation and Analytical Requirements for Air Field Quality Control Samples: | Medium
Code | | Preparation Details | | | | Analysi | A 11 11 T 1 | | |----------------|---|----------------------|------------------------|----------|--|--|--|---| | | Medium,
Sample
Type | Indirect With Ashing | t Prep? Without Ashing | Archive? | Method | Recording
Rules | Stopping Rules | Applicable Laboratory Modifications (current version of) | | В | Air,
lot blank
and field
blank | No | No | Yes | TEM –
Modified
ISO 10312,
Annex E
(Low Mag,
5,000X) | PCME asbestos;
L: > 5 μ m
W: \geq 0.25 μ m
AR: \geq 3:1 | Examine 1.0 mm ² of filter. | LB-000016, LB-000029,
LB-000066, LB-000067,
LB-000085 | ## **Analytical Laboratory Quality Control Sample Frequencies:** TEM [d]: Lab Blank – 4% Recount Same – 1% Recount Different – 2.5% Verified Analysis – 1% Interlab – 0.5% [e] Repreparation – 1% - [d] See LB-000029 for selection procedure and QC acceptance criteria. - [e] Post hoc selection to be performed by the QATS contractor. **Requirements Revision:** | Revision #: Effective Date: Revision Description 0 10/31/2012 | | |--|--| | 0 10/21/2012 | | | 0 10/31/2012 | | | Analytical Laboratory Review Sign-off: EMSL - Libby [sign & date:] | | [Checking the box and initialing above indicates that the laboratory has reviewed and acknowledged the preparation and analytical requirements associated with the specified SAP.]